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The unigram posits that each word occurrence in a document is independent
of all other word occurrences. I.e. we can think of the document generation
process as a sequence of dice rolls, where there is a fixed probability of occurrence
associated with each word. The chance observing a given document is simply
the product of the word probabilities. To calculate the chance of observing a
given set of word frequencies, we must count all the possible orderings that
achieve that set of frequencies. Let {xi} be the observed frequencies for a set
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word arrangements that achieve that set of word

frequencies. Hence, the likelihood of generating a document with that set of
frequencies is
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Note that the unigram is conditional on document length; the above gives the
conditional likelihood of generating a particular set of frequencies given that
their sum is l. The {wi} are the unnormalized word occurrence probabilities.

To find maximum likelihood weights for a document set, it is easiest to
consider minimization of negative log-likelihood. Let xij represent the number
of times word j occurs in the ith document; let li =

∑

j xij . Then, the negative
log-likelihood is
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To minimize this quantity, we find settings which give us a zero gradient with
respect to the weights. The partial derivative with respect to a weight is
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Note that the setting wj =
∑

i xij gives us a zero gradient.
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