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Abstract

We consider the calculation of the normalization constant for the trace

norm distribution. This is an integral over singular values, so we find it

beneficial to use a singular value decomposition change of variables. We

walk through the steps to compute the Jacobian of the SVD. Finally,

we apply the change of variables to our integral and provide a partial

evaluation of the integral.

1 Introduction

We are interested in the trace norm distribution [3],

P (X) =
1

Z
exp(−λ‖X‖Σ), (1)

where the normalization constant is an integral over matrices, Z =
∫

exp(−‖X‖Σ)dX .
‖X‖Σ is the trace norm of X , which is the sum of its singular values. Evaluation
of this integral would clearly benefit from a change of variables to the singular
value decomposition (SVD). The SVD of a matrix X ∈ R

n×m (wlog n > m) is
a product of three matrices, U ∈ Vn,m, Σ ∈ diag(Rm), and V ∈ O(m), where
Vn,m is the Stiefel manifold1 and O(m) is the orthogonal group2. See [2] for
additional information on these surfaces. The SVD is X = UΣV T . Note that
since Σ is diagonal, and rows of U and V must be orthogonal and sum to one,
the number of entries in X is equal to the number of free entries of the SVD.
We assume that the singular values (diagonal elements of Σ) are ordered. If the
singular values are unique, σ1 > · · · > σm, then SVD is unique up to a change
in signs of corresponding columns of U and V .

∗Joint work with John Barnett.
1Stiefel manifold is tall skinny matrices Y ∈ R

n×m with orthogonal columns, Y T Y = Im.
2Orthogonal group is orthogonal matrices Q ∈ R

m×m (QT Q = I).
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2 Jacobian for the Change of Variables

To change variables to the SVD, we must calcuate the Jacobian. We follow
the derivation given in [1], correcting typos and providing additional detail.
X = UΣV T . So,

dX = UdΣV T + dUΣV T + UΣdV T . (2)

Let H ∈ R
n×n be the orthogonal matrix with first M columns identical to U .

Define Y = HT dXV . Then

dY = HT dXV = In,mdΣ + HT dUΣ − In,mΣV T dV. (3)

Recall that V T V = I. Hence, dV T V = −V T dV or V T dV is anti-symmetric,
which is the reason for the negation of the last term. Similarly, HT dU is anti-
symmetric. Continuing, we take the exterior product3 of elements of dY . Only
the first term of (3) is not anti-symmetric, so the exterior product of the diagonal
elements is dΣ. Let ui be the ith column of U . Let vi be the ith column of V .
The upper-triangular, i < j ≤ m, elements of dY are

dYij = σju
T
i duj − σiv

T
i dvj , (4)

and the lower-triangular elements are

dYji = σiu
T
j dui − σjv

T
j dvi. (5)

Note that dYij = −σju
T
j dui + σiv

T
j dvi due to anti-symmetry. So, the exterior

product is

dYij ∧ dYji = (σ2
i − σ2

j )(vT
j dvi) ∧ (uT

j dui). (6)

Hence, the product of off-diagonal terms in the upper square part of dY is
∏

i<j≤m

(σ2
i − σ2

j )(V T dV )∧(UT dU)∧. (7)

For i > m,

dYij = σjh
T
i duj . (8)

Hence, each σj appears an additional n − m times in dY . Define H̃ as the

portion of H that does not come from U . I.e. H = [UH̃ ]. Then, the portion of
the exterior product from below the top square is

∏

i≤m

σn−m
i (H̃T dU)∧. (9)

Putting everything together, we get

dY =
∏

i<j≤m

(σ2
i − σ2

j )
∏

i≤m

σn−m
i (dΣ)∧(V T dV )∧(HT dU)∧. (10)

Note that H and V are rotation matrices. They do not affect volume, so we can
use dY instead of dX in our integral.

3See [1] for a tutorial on the wedge/exterior product.
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3 Trace Norm Distribution Integral

Applying the change of variables to our integral, we get

Z =

∫

exp(−λ‖X‖Σ)dX =

1

2m

∫

∏

i<j≤m

(σ2
i − σ2

j )
∏

i≤m

σn−m
i e−σi(dΣ)∧(V T dV )∧(HT dU)∧. (11)

Recall that except for a measure zero set, the SVD is unique up to a sign, hence
the 2−m term. Note that Z is really the product of three separate integrals,

Z =
1

2m

∫

∏

i<j≤m

(σ2
i − σ2

j )
∏

i≤m

σn−m
i e−σi(dΣ)∧

∫

(V T dV )∧
∫

(HT dU)∧. (12)

Note that
∫

(V T dV )∧ is the volume of the orthogonal group, O(m), and
∫

(HT dU)∧

is the volume of the Stiefel manifold, Vn,m. The Stiefel manifold is a generaliza-
tion of the orthogonal group. Edelman [2] provides the Stiefel manifold volume,

Vol(Vn,m) =

n−m+1
∏

i=n

Ai =

n−m+1
∏

i=n

2πi/2

Γ
(

i
2

) , (13)

where Ai is the surface area of the sphere in R
i of radius 1. Note that the

remaining integral over singular values,

∫ ∞

0

· · ·

∫ σm−1

0

∏

i<j≤m

(σ2
i − σ2

j )
∏

i≤m

σn−m
i e−σidσm . . . dσ1, (14)

can be computed analytically. However, exact evaluation is intractible for large
n or m.
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