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Abstract

The standard SVM formulation can handle binary labels. Extensions
to multiple classes, regression and structured data have been made. How-
ever, none of these formulations are appropriate when labels are integer
ratings (such as movie or restaurant “star” ratings). Here we provide the
primal and dual objectives for an SVM that learns ratings. This is use-
ful for collaborative filtering where data usually comes in the form of an
integer rating on each (user,item) pair.

1 Introduction

We assume that each user as a real-valued feature vector that identifies his/her
preferences, ~xi. For each object (e.g. book, movie), there are integer ratings
(e.g. ∈ {1, 2, 3, 4, 5}) that identify to what degree individual users prefer that
object. Not all users give ratings for all objects. The goal is to be able to predict
the rating a user would give to an un-rated object and to predict ratings for a
new user, given a feature vector for that new user.

2 SVM Formulation

We define:

• U - number of unique ratings (ratings are {1, . . . , U})

• R - set of index pairs of observed ratings

• i(r) - first index of r ∈ R

• j(r) - second index of r ∈ R

• y(r) - rating observed for r ∈ R

• ~xi - feature vector for user i

• ~wj - parameter vector for object j
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• by - bias term (y ∈ {1, . . . , U − 1})

• αkl - Lagrange multiplier, k ∈ {1, . . . , |R|}, l ∈ {1, 2}

The primal constraints are

~xi(r) · ~wj(r) + by(r)−1 ≥ +1− ξr, ∀r s.t. y(r) > 1, (1)
~xi(r) · ~wj(r) + by(r) ≤ −1 + εr, ∀r s.t. y(r) < U, (2)

ξr ≥ 0, ∀r, and (3)
εr ≥ 0, ∀r. (4)

The SVM primal objective is

JP =
m∑

j=1

1
2
‖~wj‖2 + C

∑
r∈R

(ξr + εr)−
∑
r∈R

αr(~xi(r) · ~wj(r) + by(r)−1 − 1 + ξr)

+
∑
r∈R

βr(~xi(r) · ~wj(r) + by(r) + 1− εr)−
∑
r∈R

µrξr −
∑
r∈R

νrεr, (5)

where αr = 0 ⇔ y(r) = 1 and βr = 0 ⇔ y(r) = U . The KKT conditions are

∂JP

∂ ~wj
= ~wj −

∑
r∈R|j(r)=j

(αr − βr)~xi(r) = 0, (6)

∂JP

∂bl
=

∑
r|y(r)=l+1

αr −
∑

r|y(r)=l

βr = 0, (7)

∂JP

∂ξr
= C − αr − µr = 0, (8)

∂JP

∂εr
= C − βr − νr = 0, (9)

~xi(r) · ~wj(r) + by(r)−1 − 1 + ξr ≥ 0, (10)
−~xi(r) · ~wj(r) − by(r) − 1 + εr ≥ 0, (11)

ξr ≥ 0, (12)
εr ≥ 0, (13)
αr ≥ 0, (14)
βr ≥ 0, (15)
µr ≥ 0, (16)
νr ≥ 0, (17)

αr(~xi(r) · ~wj(r) + by(r)−1 − 1 + ξr) = 0, (18)
βr(~xi(r) · ~wj(r) + by(r) + 1− εr) = 0, (19)

µrξr = 0, and (20)
νrεr = 0. (21)
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These conditions imply

~wj =
∑

r∈R|j(r)=j

(βr − αr)~xi(r), (22)

∑
r|y(r)=l+1

αr =
∑

r|y(r)=l

βr, (23)

0 ≤ αr ≤ C, and (24)
0 ≤ βr ≤ C. (25)

The dual objective is

JD =
∑
r∈R

(αr + βr)−
1
2

∑
r∈R

∑
s|j(s)=j(r)

(αr − βr)(αs − βs)~xi(r) · ~xi(s) (26)

Recall that αr = 0 ⇔ y(r) = 1 and βr = 0 ⇔ y(r) = U . In other words,
minimization of the dual objective is only over {αr} such that y(r) > 1 and
{βs} such that y(s) < U .
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