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Let Y , U , and V be n × m matrices. Y is binary; U and V are real. We
want to update U and V so that UV T ≈ Y . We detail the alternating SVM
algorithm described in (Srebro et al., 2005).

1 Learning V with fixed U

Assume U fixed. Each row of V can be solved for using the Support Vector
Machine.

Define

• Î(i, j) - number of observed entries in column j with row index ≤ i.

• Ĵ(i, j) - number of observed entries in row i with column index ≤ j.

• I(s) - row index of observed entry s ∈ S

• J(s) - column index of observed entry s ∈ S

Let j index a column of Y (and, correspondingly, a row of V ). For all s ∈ S
such that J(s) = j, let

i = I(s), (1)

î = Î(i, j), (2)
~xî = Ui·, and (3)
yî = Yij . (4)

We train an SVM on examples {~xî} and labels {yî}. We set row j of V to the
learned weight vector,

Vj· = ~w. (5)

∗Joint work with Nati Srebro and Tommi Jaakkola.
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2 Learning U with fixed V

Assume V fixed. Each row of U can be solved for using the Support Vector
Machine. Make the same definitions as above. Let i index a row of Y (and,
correspondingly, a row of U). For all s ∈ S such that I(s) = i, let

j = J(s), (6)

ĵ = Ĵ(i, j), (7)
~xĵ = Vj·, and (8)

yĵ = Yij . (9)

We train an SVM on examples {~xĵ} and labels {yĵ}. We set row i of U to the
learned weight vector,

Ui· = ~w. (10)

3 Kernel Values

If Y is large, it may not be possible to store the entire U and V matrices. Here
we discuss how to execute the algorithm using only kernel products. The dual
objective of the SVM involves kernel products between pairs of examples.

Let j index a column of Y .

V
(t+1)
j· =

∑
s∈S|J(s)=j

αîyîU
(t)
I(s)· (11)

Let i index a row of Y .

U
(t)
i· =

∑
s∈S|J(s)=i

αĵyĵV
(t)
J(s)· (12)

Fixed U : Let A be matrix of learned {~α}. Each row of A corresponds to a
row of V . Zeros correspond to unobserved entries. Then V = AUT .

Fixed V : Use β to denote dual parameters for this problem. Let B be matrix
of learned {~β}. Each row of B corresponds to a row of U . Zeros correspond to
unobserved entries. Then U = BV T .

Use subscript to denote iteration:

V(t) = A(t)U
T
(t−1) (13)

U(t) = B(t)V
T
(t) (14)

U(t+1) = B(t)U(t)A
T
(t) (15)

U(t+2) = B(t+1)B(t)U(t)A
T
(t)A

T
(t+1) (16)

Note that A and B are sparse—only as many entries as number of observed
items.
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