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Abstract

We introduce McCullagh’s Proportional Odds as the foundation for
modern Ordinal Regression approaches. Proportional Odds introduced
the ideas of (1) mapping examples to the real number line, and (2)
segmenting the real number line using a set of thresholds. We com-
pare against two modern approaches to Ordinal Regression which use
the framework established by Proportional Odds and find some surpris-
ing similarities.

1 Proportional Odds

McCullagh’s Proportional Odds model (1980) assumes that:

• Examples are represented as d-dimensional real-valued feature vectors,
x ∈ R

d,

• Each example has an underlying score, defined by the dot-product between
the feature vector and a weight vector, w ∈ R

d,

• Each example is associated with a discrete, ordinal label, y ∈ {1, . . . , l},

• The real number line is segmented via a set of threshold values, −∞ ≡
θ0 < θ1 < θ2 < · · · < θl−1 < θl ≡ +∞, and

• Each label, y, is associated with a segment of the real number line, (θy−1, θy).

Define g(z) ≡ 1

1+e−z , the sigmoid function. Proportional Odds defines the
cumulative likelihood of an example being associated with a label less-than-or-
equal-to j (for j ≤ l − 1) as the sigmoid function,

PPO(y ≤ j|x) = g(θj − wT x) =
1

1 + exp(wT x − θj)
. (1)

∗Updated October 30, 2006.
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By definition, P (y ≤ l|x) = 1. Note that P (y ≤ 1|x) ≡ P (y = 1|x). We
calculate other likelihoods by taking cumulative differences,

PPO(y = j|x) = PPO(y ≤ j|x) − PPO(y ≤ j − 1|x) for j ≥ 2, (2)

=
1

1 + exp(wT x − θj)
−

1

1 + exp(wT x − θj−1)
.

Parameters (w, θ) are learned via maximum likelihood. One can “modernize”
Proportional Odds by introducing a Gaussian prior on the weight vector (w),
which would serve to regularize the predictor. Also, the kernel trick (Wikipedia,
2006) can be used to yield a non-linear predictor without increasing memory
consumption.

2 Immediate Thresholds with a Logistic Loss

Rennie and Srebro (2005) use a framework for Ordinal Regression which has
similarities to Proportional Odds. In particular, consider Immediate Thresholds
(IM) with a Logistic loss1. The “loss” function is

LossIM(j|x) = log
[

1 + exp(wT x − θj)
]

+ log
[

1 + exp(θj−1 − wT x)
]

(3)

= − log
[

g(θj − wT x)
]

− log
[

g(wT x − θj−1)
]

(4)

Note that we can artificially reproduce this from Proportional Odds by treating
each y = j event as two events: y ≤ j and y > j − 1. Treating these two events
as independent, we get an (unnormalized) likelihood2 of

PIM(y = j|x) ∝
1

[1 + exp(wT x − θj)] [1 + exp(θj−1 − wT x)]
, (5)

which corresponds exactly with the IM loss. Note that we can similarly artifi-
cially reproduce All Thresholds (w/ Logistic loss) by splitting the y = j event
into l − 1 events.

2.1 Comparison with Proportional Odds

Figure 1 compares the loss functions for Proportional Odds and Immediate
Thresholds using z ≡ wT x as a single parameter (as well as Gaussian Processes,
discussed in section 3). The two plots (for PO and IM) look strikingly similar.
In fact, they are identical save for a small constant difference of 0.0185 (PO loss

1Shashua and Levin’s “fixed margin” approach (2003) is equivalent to what Rennie and
Srebro (2005) call Immediate Thresholds with a Hinge loss.

2The loss function for a probabilistic model is the negative log probability.
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Figure 1: Loss functions for (left) Proportional Odds, (center) Immediate
Thresholds, and (right) Gaussian Processes. The x-axis is the predictor out-
put, z ≡ wT x; the y-axis is the loss (or negative log-likelihood). The thresholds
are at θj = 2 and θj−1 = 2.

is larger). Why is this? Consider the difference between loss functions:

∆ ≡ LossIM(j|x) + log P (y = j|x) = log

[

g(θj − wT x) − g(θj−1 − wT x)

g(θj − wT x)g(wT x − θj−1)

]

= log

[

1 + exp(wT x − θj−1) − 1 − exp(wT x − θj)

[1 + exp(wT x − θj)][1 + exp(wT x − θj−1)]

[1 + exp(wT x − θj)][1 + exp(θj−1 − wT x)]

]

= log
[

exp(wT x − θj−1) − exp(wT x − θj)
]

− log[1 + exp(wT x − θj−1)]

+ log[1 + exp(θj−1 − wT x)]

(6)

Now, consider the partial derivative of the difference with respect to w,

∂∆Loss

∂w
= x −

x exp(θj−1 − wT x)

1 + exp(θj−1 − wT x)
−

x exp(wT x − θj−1)

1 + exp(wT x − θj−1)
= 0 (7)

A change in the weight vector, w, does not affect the difference in loss functions.
This explains the fact that in Figure 1 the PO and IM plots differ by a constant
amount. Now, consider the partial derivative with respect to a threshold, θj ,

∂∆Loss

∂θj

=
exp(wT x − θj)

exp(wT x − θj−1) − exp(wT x − θj)
=

1

exp(θj − θj−1) − 1
(8)

Note that θj ≥ θj−1; i.e. the partial derivative is non-negative. We see that as
the difference in thresholds increases, so does the difference in loss functions.
However, this effect disappears quickly as the difference between the thresholds
increases. If we had compared Proportional Odss and Immediate Thresholds
with a different upper threshold (θj), we would have found a different constant
difference between the loss functions.

We conclude that if the thresholds are fixed a priori, then the two models
(Proportional Odds and Immediate-Thresholds) behave identically. However,
the models are affected differently by the settings of the threshold values.

3 Gaussian Processes

Chu and Ghahramani (2004) introduce a Gaussian Process framework for Or-
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dinal Regression. Similar to Proportional Odds, they map each example to the
real line via a function and segment the real line via a set of thresholds. They
also use a probabilitistic model which is normalized over the set of labels. They
posit an “ideal” likelihood3,

Pideal(y = j|wT x) =

{

1 θj−1 < wT x ≤ θj

0 otherwise
, (9)

and assume a Gaussian prior over the data point location to account for noise
in the data. They integrate the “ideal” likelihood over the Gaussian prior to
arrive at the likelihood,

P (y = j|x) =

∫

Pideal(y = j|wT x + δ)N (δ; 0, σ2)dδ = Φ(z1) − Φ(z2), (10)

where z1 =
θj−wT x

σ
, z2 =

θj−1−wT x

σ
, Φ(z) =

∫ z

−∞
N (z; 0, 1)dz and N (δ; 0, σ2)

denotes a Gaussian PDF with random variable δ, zero mean and σ2 variance.

3.1 Comparison with Proportional Odds

Recall that the likelihood for Proportional Odds is the difference between two
sigmoids (2). The likelihood for Chu and Ghahramani’s model is the difference
between two Gaussian CDFs. If we replace the Gaussian PDF in (10) with the
derivative of the sigmoid, we arrive at the Proportional Odds likelihood,

P (y = j|x) =

∫

Pideal(y = j|wT x + δ)g(δ)(1 − g(δ))dδ (11)

= g(θj − wT x) − g(θj−1 − wT x). (12)

The effect of the standard deviation (σ) in the Gaussian can be achieved by
using a more general version of the sigmoid (with a scaling parameter). A
similar effect can be achieved by including a prior (regularizer) on the weight
vector (w). I.e. at its core, Chu and Ghahramani’s model is Proportional Odds
with a swap of the sigmoid for a Gaussian cumulative distribution. As can
be observed in Figure 1, Proportional Odds imposes an approximately linear
penalty on margin violations, whereas Chu and Ghahramani’s model imposes
an approximately quadratic penalty. As a result, Chu and Ghahramani’s model
may be overly sensitive to outliers.
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