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Let Y ∈ {1, . . . , l}n×m be the rating matrix; Yij is the ith user’s rating of item

j. Let S ∈ {−1,+1}n×m, Sij(k) =
{

+1 if k ≥ Yij

−1 if k < Yij
. The all-threshold/trace-

norm version of MMMF tries to find X ∈ Rn×m and ~θ ∈ Rn×l−1 (one set of θ’s
per row of X) so as to minimize

J(X) = J(UV T ) = λ‖X‖tr +
l−1∑
k=1

∑
ij

h
(
Sij(k)(θik −Xij)

)
, (1)

where h(z) = (1− z)+ is the hinge loss function1 and ‖ · ‖tr is the trace norm,

‖X‖tr = min
X=UV ′

1
2
(‖U‖2

Fro + ‖V ‖2
Fro), (2)

where ‖ · ‖Fro is the Frobenius norm. Let p be the number of columns of U and
V ; a conservative setting is p = max(n, m). We can equivalently find U ∈ Rn×p,
V ∈ Rm×p and θ ∈ Rn×(l−1) so as to minimize

J(U, V ) =
λ

2
(‖U‖2

Fro + ‖V ‖2
Fro) +

l−1∑
k=1

∑
ij

h
(
Sij(k)(θik − UiV

T
j )

)
(3)

where Ui is the ith row of U and Vj is the jth row of V . Note that J(UV T ) ≤
J(U, V ) and minUV T J(UV T ) = minU,V J(U, V ). That is, the second objective
is an upper bound for the first objective with the special property that their
global minima have the same value (and settings for U and V ). However, while
J(UV T ) is a convex objective (in UV T ), J(U, V ) is not convex (in U ,V ) and
we cannot guarantee that gradient descent will not get stuck in local minima.

In practice, we choose random initial values for U , V and θ and use the
gradient to find successive improvements. While there is no gurantee we will

1Note that h(·) (and h′(·)) are a scalar functions: R → R. When applied to non-scalar
arguments (such as vectors and matrices), they are applied component-wise. I.e. h′(~z) =
(h′(z1), h′(z2), . . . , h′(zn)).
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converge to the global minimum, we have had success in practice. The partial
derivative for each element of U is

∂J

∂Uia
= λUia −

l−1∑
k=1

∑
j

Sij(k)h′
(
Sij(k)(θik − UiV

T
j )

)
Vja (4)

The partial for Vja is analogous. The partial for each θik is

∂J

∂θik
=

∑
j

Sij(k)h′
(
Sij(k)(θik − UiV

T
j )

)
. (5)

Note that the partials lend themselves to matrix notation,

∂J

∂Ui
= λUi −

l−1∑
k=1

∑
j

Sij(k)h′
(
Sij(k)(θik − UiV

T
j )

)
Vj , (6)

= λUi −
l−1∑
k=1

[
Si(k) ∗ h′

(
Si(k) ∗ (θik − UiV

T )
)]

V, (7)

∂J

∂U
= λU −

l−1∑
k=1

[
S(k) ∗ h′

(
S(k) ∗ (θ·k~1T − UV T )

)]
V. (8)

Similarly,

∂J

∂V
= λV −

l−1∑
k=1

[
S(k) ∗ h′

(
S(k) ∗ (θ·k~1T − UV T )

)]T

U. (9)

We can also write the partials with respect to θ more compactly,

∂J

∂θ·k
= [S(k) ∗ h′(S(k) ∗ (θ·k~1T − UV T ))]~1. (10)

Finally, we give a compact form of the objective:

J =
λ

2
(‖U‖2

Fro + ‖V ‖2
Fro) +

l−1∑
k=1

sum(h(S(k) ∗ (θ·k~1T − UV T ))). (11)

We use ∗ to denote element-wise product.
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