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1 Introduction

The Smooth Hinge Classification (SHC) minimization objective is

n
A
JRLR = ; h(y: - & @) + §U7TU7’ (1)
where {Z1,...,%,}, z; € R% are the training examples and {y1,...,yn}, vi €

{+1,—1}, are the labels and h(-) is the smooth hinge loss function:

%—z ifz2<0
(1-2)% ifo<z<1 . (2)

0 ifz>1

h(z) =

N[ =

Note that the derivative is zero to the right of the margin, one to the left of the
margin and linearly interpolates between the two values within the margin:

-1 ifz<0
W(z)=¢ z2—1 if0<z<1 . (3)
0 ifz>1

See [2] for a discussion of the Smooth Hinge Loss function. We wish to extend
this to multiple, ordinal labels, as we did for Logistic Regression in [1]. As before,
we use [ — 1 thresholds, {61,...,0;_1} to represent the segments. We concern
ourselves with the “all-threshold” objective for ordinal regression/classification
and find no need to define “thresholds” at oo as we did before.

2 All-Threshold

The All-Threshold Ordinal Smooth Hinge Classification (AOSHC) minimization
objective is
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The partial derivative wrt each weight is

n yi—1

9Jan .
P, :Z z;;h () W — Zacmh’ (0 — ZTW) | + Mw;. (5)

i=1 | k=1 k=y;

We can also write this compactly using matrix notation. Define §(k) such that

41 k>
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where * denote element-wise multiplication. Using our definition for 5(k), the
partial derivative wrt each threshold is
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