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1 Introduction

The Regularized Logistic Regression (RLR) minimization objective is

JRLR =
n∑

i=1

log(1 + exp(−yi · ~xT
i ~w)) +

λ

2
~wT ~w, (1)

where {~x1, . . . , ~xn}, xi ∈ Rd, are the training examples and {y1, . . . , yn}, yi ∈
{+1,−1}, are the labels. We wish to extend this to multiple, ordinal labels. In
other words, we still want a single weight vector, but we want to segment the real
line into l sections, one for each label. We use l− 1 thresholds, {θ1, . . . , θl−1} to
represent the segments. We use θ0 and θl to denote −∞ and +∞ (respectively).
Label k ∈ {1, . . . , l} corresponds to the segment (θk−1, θk).

Shashua and Levin introduced the idea of applying large-margin classifiers to
the problem of ordinal classification (also known as “ranking” or “rating”) [2].
We discuss their “fixed-margin” formulation; we call it “immediate-threshold.”
We also discuss a formulation, introduced by Srebro et. al., where loss is incurred
for all thresholds, not only the neighboring ones [3]; we call this “all-threshold.”
Whereas earlier works used the Hinge loss, we use the Logistic loss here. We
also discuss the Generalized Logistic loss, which provides a continuum between
the Logistic and the Hinge.

2 Immediate-Threshold

Define h(z) := log(1+exp(z)). Then the minimization objective for the immediate-
threshold version of Ordinal Logistic Regression is

JImm =
n∑

i=1

h(θyi−1 − ~xT
i ~w) + h(~xT

i ~w − θyi
) +

λ

2
~wT ~w. (2)

Note that h(θ0−~xT
i ~w) = h(~xT

i ~w−θl) = 0 ∀i, ~w. Also, note that we have defined
h so that the thresholds appear are oriented as they are on the real number line
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with respect to outputs of correctly classified examples. For example, ~xT
i ~w < θ1

if yi = 1, and xi is correctly classified.
We can use gradient descent-type methods to learn this model. For that, we

need to be able to calculate the gradient. Note that ∂h(z)
∂z = exp(z)/(1+exp(z)).

Define g(z) := (1 + exp(−z))−1 = ∂h(z)
∂z . Then, the partial derivative wrt each

weight is

∂JImm

∂wj
=

n∑
i=1

xij

[
g(~xT

i ~w − θyi
)− g(θyi−1 − ~xT

i ~w)
]
+ λwj , (3)

or, written more compactly using matrix notation,

∂JImm

∂ ~w
= XT [g(X ~w − θ~y)− g(θ~y−1 −X ~w)] + λ~w, (4)

where θ~y = {θy1 , . . . , θyn} and functions are applied element-wise. The partitial
derivative wrt each threshold is

∂JImm

∂θk
=

∑
i|yi−1=k

g(θk − ~xT
i ~w)−

∑
i|yi=k

g(~xT
i ~w − θk). (5)

3 All-Threshold

Note that with the above Immediate-Threshold formulation, there is no guar-
antee that the thresholds will be ordered. In the case of one or more under-
represented labels, one can almost be assured that for the optimal parameter
setting, there will be some i < j such that θi > θj . The formulation we de-
scribe next, All-Threshold, imposes additional penalties which ensure that the
thresholds are ordered, θ1 ≤ θ2 ≤ · · · ≤ θl−1.

We define h(z) and g(z) as before. Then the minimization objective for the
all-threshold version of Ordinal Logistic Regression is

JAll =
n∑

i=1

yi−1∑
k=1

h(θk − ~xT
i ~w) +

l−1∑
k=yi

h(~xT
i ~w − θk)

 +
λ

2
~wT ~w. (6)

The partial derivative wrt each weight is

∂JAll

∂wj
=

n∑
i=1

 l−1∑
k=yi

xijg(~xT
i ~w − θk)−

yi−1∑
k=1

xijg(θk − ~xT
i ~w)

 + λwj . (7)

We can also write this compactly using matrix notation. Define ~s(k) such that

si(k) =
{

+1 if k ≥ yi

−1 if k < yi
. Then,

∂JAll

∂ ~w
=

l−1∑
k=1

XT [~s(k) ∗ g(~s(k) ∗ (X ~w − θk))] + λ~w, (8)
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where ∗ denote element-wise multiplication. Using our definition for ~s(k), the
partial derivative wrt each threshold is

∂JAll

∂θk
= −~1T [~s(k) ∗ g(~s(k) ∗ (X ~w − θk))] (9)

4 Generalized Logistic Loss

So far we have used the Logistic Loss, h(z) = log(1 + exp(z)). Zhang and Oles
(§2, page 6) discuss the Generalized Logistic loss1,

h+(z) =
1
γ

log(1 + exp(γ(z − 1))), (10)

which effectively scales the x- and y-axes according to γ [4]. See Rennie for
additional discussion [1]. An important property of the Generalized Logistic is
that its limit as γ → ∞ is the (reflected) Hinge loss. We are concerned with
only the relative values of h+(z), so we can discard the outside multiplicative
constant. Additionally, since we learn (via 10-fold cross-validation, or some
such techique) the regularization parameter, λ (which effectively controls the
magnitude of z), we can dismiss the multiplication of z by a constant. We are
left with

h∗(z) = log(1 + exp(z − γ)), (11)

which we call the Shifted Logistic loss. As γ →∞, the parameters learned using
this loss will tend to the parameters learned using the Hinge loss2. A benefit of
this over the Generalized Logistic loss is that it will tend to be more stable for
gradient descent-type algorithms that use function curvature estimates for line
search. As discussed in [1], sharpness(h+) = γ/4; yet sharpness(h∗) = 1/4. So,
we think the Shifted Logistic loss will be easier to use with gradient descent-type
optimization algorithms.

Updating Immediate-threshold and All-threshold Ordinal Logistic Regres-
sion to use the Shifted Logistic loss requires only small changes. However, care
must be taken to ensure that signs are correct—γ should always have the same
sign as the threshold.

4.1 Immediate-Threshold

The updated objective is

J∗
Imm =

n∑
i=1

h(θyi−1 + γ − ~xT
i ~w) + h(~xT

i ~w − θyi − γ) +
λ

2
~wT ~w. (12)

1Traditionally, the exponent is negated in the Logistic and Generalized Logistic; we break
from tradition. But, notice that the difference is only surface-deep. The important proper-
ties of the Logistic loss do not change; h(z) is simply the reflection about the y-axis of the
traditionally defined Logistic loss.

2Assuming that the regularization parameter is learned in a way that is not tied to the
magnitude of the parameters, e.g. minimization of cross-validation error on the training data.
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The partial derivatives follow analogously.

4.2 All-Threshold

The updated objective is

J∗
All =

n∑
i=1

yi−1∑
k=1

h(θk + γ − ~xT
i ~w) +

l−1∑
k=yi

h(~xT
i ~w − θk − γ)

 +
λ

2
~wT ~w. (13)

The partial derivatives follow analogously.
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