The Gaussian-like Normalization Constant

Jason D. M. Rennie jrennie@gmail.com

November 6, 2005

Abstract

Here we give the procedure for deriving the normalization constant for a Gaussian-like distribution

Consider the function described by

$$\tilde{P}(x) = \exp\left(-x^2\right). \tag{1}$$

Clearly this can be normalized to a distribution since $\tilde{P}(x) < \exp(-x)$ for $|x| \ge 1$ and $\tilde{P}(x) \le 1$ for $|x| \le 1$. In fact, $\tilde{P}(x)$ is (nearly) the uni-variate un-normalized standard Normal distribution (Gaussian with zero mean and unit variance).

The standard normal is a very well known distribution, but calculation of the normalization constant isn't completely trivial. The normalization constant is \tilde{P} integrated from $-\infty$ to $+\infty$. But, no antiderivative exists for $\exp(-x^2)$.

The trick is to consider the bi-variate version of \tilde{P} and to integrate using polar coordinates. Define

$$\tilde{Q}(x,y) = \tilde{P}(x)\tilde{P}(y) = \exp(-x^2)\exp(-y^2) = \exp(-(x^2 + y^2)).$$
(2)

To normalize \tilde{Q} , we must calculate $Z_Q = \iint \exp(-x^2 - y^2) dx dy$, where both integrals range over \mathbb{R} . As is well known, any bi-variate integral over Euclidean coordinates can be rewritten using polar coordinates (e.g. §17.3 of [1]),

$$\iint f(x,y)dydx = \iint f(r\cos\theta, r\sin\theta)rdrd\theta.$$
(3)

In our case, $f(r \cos \theta, r \sin \theta) = \exp(-r^2)$, so the normalization constant can be written as

$$Z_Q = \int_0^{2\pi} \int_0^\infty \exp(-r^2) r dr d\theta.$$
(4)

Since the inner integral is constant as a function of θ , we can rewrite it as $Z_Q = 2\pi \int_0^\infty \exp(-r^2) r dr$. And, unlike the original integral we posed, this integral is trivial and has an immediately apparante anti-derivative. $d\left(\exp(-r^2)\right) = -2r\exp(-r^2)dr$, so

$$Z_Q = -\pi \left[e^{-\infty} - e^{-0} \right] = \pi.$$
 (5)

We're almost done. Define $Q(x,y) = \frac{\tilde{Q}(x,y)}{Z_Q} = \frac{1}{\sqrt{\pi}} \exp(-x^2) \frac{1}{\sqrt{\pi}} \exp(-y^2)$, which is a distribution. Due to symmetry, it must be that the normalization constant for \tilde{P} is $\sqrt{\pi}$. Thus, $P(x) = \frac{1}{\sqrt{\pi}} \exp(-x^2)$ is a distribution. It is straightforward to extend this result to multiple dimensions. Let $\vec{x} \in \mathbb{R}^n$.

Then

$$R(\vec{x}) = \pi^{-n/2} \exp(-\|\vec{x}\|_2^2), \tag{6}$$

is a distribution, where $\|\vec{x}\|_2^2 = \sum_i x_i^2$ is the squared L_2 -norm. Thanks to John for reminding me of the polar coordinates trick.

References

[1] E. W. Swokowski. Calculus. PWS-Kent Publishing Company, 1983.