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Abstract
We provide basic calculations for applying MMMF to text using a
natural parameter Multinomial model.

1 Introduction

We provide the math that extends Maximum-Margin Matrix Factorization [3]
to text. We replace the hinge (classification) loss function with the multinomial
negative-log likelihood. We retain the trace norm regularization of MMMF,
but the maximum-margin loss is gone, replaced by the multinomial negative
log-likelihood.

2 Natural Parameter Multinomial

We use the natural parameter formulation of the multinomial, as discussed in [1].
We assume we are given a term frequency matrix, Y, for a set of documents. We
use X to represent the matrix of parameters for the multinomial. The likelihood
for document i is
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The negative log-likelihood is

—log P(Y;|X;) =) Vi; |log | Y exp(Xijr) | — Xi| +C, (2)
J J’

where C' = 3, logY;;! — log (ZJ Yij)! is a function of Y; only. We use the
negative log-likelihood summed across documents as the loss for the data.

*Updated March 29, 2006.



3 Learning

For MMMF, we want to minimize the data loss subject to a constraint on the
trace norm, or minimize the trace norm subject to a constraint on the data loss.
Equivalently, we can minimize a combined objective,

JX) = NX s = 3 log P(Yi|X)). 6

| X ||s is the trace norm (sum of singular values) of the matrix X. The coefficient
A € [0,00) provides a trade-off between minimization of the trace norm and
minimization of the data loss. By controlling A, we can achieve solutions to any
of the posed problems.

The given objective, J, is not easy to optimize. However, we can pose a
different, easier-to-optimize objective with the same global minimum. We make
use of the fact that the trace norm of a matrix is equal to the minimum over
factorizations, || X |z = minyy 2(|U|}0 + [V[[Eo)- Let Us be the i row of
U. Let V; be the j* row of V. Our alternate objective simply substitutes this
identity,

J'(U,V) :%

Since we are minimizing J’ over U, V, it is immediately clear that the global
minima of the two objectives are identical, miny v J'(U, V|Y) = minx J(X|Y).
Unfortunately, this alternate objective is not convex. However, empirical tests
indicate that local minima are, at worst, rare [2].

Appendix: Implementation Details

We optimize J’ using gradient descent. To do this, we make use of the objective
and gradient. We write out the math in detail. We assume functions and
operations (e.g. log(), exp(), 2, *, /) are applied element-wise). We use 1 to
represent the ones column vector. First, we calculate the objective,

J(X) =X s+ Vi |log | D _exp(Xiy) | — Xy (5)
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Next, we calculate the partial derivative with respect to U,
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Finally, we calculate the partial derivative with respect to V,
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