Gradient Calculations for the Mean, Covariance
Matrix Parameterization of the Multivariate
Normal

Jason D. M. Rennie
jrennie@gmail.com

August 18, 2006

1 Introduction

We use p € R? to parameterize the mean vector and A € R?** to parameterize
the covariance matrix. The covariance matrix is S = AA”. Note that S is
symmetric (S = ST) and positive semi-definite (xSx? > 0. The likelihood of a
set of n data points, X € R"*? is

P(X|p,A) = W exp (‘% Z(Xz — ST X — H)T> - (@)

%

Maximum likelihood parameters are those that maximize the likelihood, or,
equivalently, minimize the negative log-likelihood,

J=PX|p,A)=C+ % (nlog S|+ > (Xa — )8~ (Xa — u)T> , (2)

where C is a constant (not a function of p, or A). One option for learning of the
parameters is gradient descent!. It is well known that negative log-likelihood
is not convex in this traditional (mean, covariance matrix) parameterization.
However, we can use gradient descent to find a local minimum.

1By “gradient descent,” we are not referring specifically to the simple algorithm which uses
the negative gradient as its direction at each step, but rather the family of algoritms which
use only (current and past) gradient calculations to choose a direction at each step.



2 Setup

To simplify the full gradient calculation, we break the objective into two its two
important terms, J = C + 3 (J1 + J2), where

J1 = nlog|S| (3)
o= (Xa=w)S ' (Xa— )" =D [Xa—ptsSp (Ko — ple: (4)
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We provide a number of intermediate partial derivative calculations:
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Note: dlog|S| = Tr(S719S5) =3, 5,05y

3 Gradient Calculations

Partial derivative of J; wrt A:
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Partial derivative of Jy wrt p:
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Partial derivative of Jy wrt A:
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Notation
a, o scalar
a, « (row) vector
A matrix
diag(A) diagonal of A, treated as a row vector
diag(a) diagonal matrix, with diagonal elements taken from «
Aap scalar from a'" row, b*" column of A
A} scalar from a'" row, b*" column of A~!
Ay b'h column of A (as a column vector)
A, a'™™ row of A (as a row vector)
AB matrix multiplication
ab” vector product
Ax B, axb | element-wise multiplication
A/B, a/b | element-wise division
A+a, A—a | add/subtract a from each row of A
Axa, é multiply/divide each row of A by a
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