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Zhang and Oles [1] note that parameters for the Support Vector Machine can-
not be optimized direcly (using traditional, gradient-descent-type approaches)
due to the use of the hinge loss function,

g(z) = max(0,1 — z). (1)

The hinge loss function has a discontinuous derivative at z = 1. They propose
an alternate, smooth loss based on the squared loss,
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This “modified squared loss” is similar to the hinge loss. In particular, it serves
as an upper bound to the step function that is tight at z = 0 and z > 1. See
Figure 1 for plots of the two loss functions. Unlike the hing loss, the modified
squared loss is sufficiently smooth to be optimized via simple, gradient-descent-
type algorithms.

The full minimization objective for Modified Regularized Least Squares Clas-
sification (MRLSC) is

n
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where {Z1,...,%,}, #; € R? are the training examples, i/ € R" are the training

labels, @ € R? is the weight vector and ) is the regularization parameter. The
gradient is

aJ =
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where h’(z):{ 0 frs
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Figure 1: Shown are the Modified Least Squares (MLS), Hinge and Step loss
functions.



