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The Regularized Logistic Regression (RLR) minimization objective is

JRLR =
n∑

i=1

log(1 + exp(−yi · ~xT
i ~w)) +

λ

2
~wT ~w, (1)

where {~x1, . . . , ~xn} are the training examples and {y1, . . . , yn} are the labels.
The per-example (Logistic) loss is g(z) = log(1 + exp(−z)).

We make two modifications to RLR that improve its ability to generalize:
(1) we use a generalized form the Logistic, and (2) we shift the Logistic by one.
These two modifications have the effect of encouraging a margin yet ignoring
examples that are predicted well by the model. This modified Logistic Regres-
sion, which we will call Maximum-Margin Logistic Regression (MMLR), can be
viewed as an approximation to the Support Vector Machine.

Zhang and Oles discuss the Generalized Logistic1 loss [1],

g(z, γ) =
1
γ

log(1 + exp(−γz)). (2)

γ is what we call the “sharpness.” Define the sharpness of a function f(x) as
the maximum magnitude of the second derivative,

sharpness(f) = max
z

∣∣∣∣∂2f(z)
∂z∂z

∣∣∣∣ . (3)

Define the closure f(z) = g(z, γ). Then sharpness(f) = γ
4 .

At γ = 1, the Generalized Logistic loss is the Logistic loss; it is a re-scaled
Logisitic for other values. Figure 1 shows graphs of the Logistic and General-
ized Logistic. The Generalized Logistic is a smooth approximation of the Hinge
loss. As γ → ∞, sharpness increases without bound and the Generalized Lo-
gistic approaches the Hinge loss, h(z) = max(0,−z). Smaller values of γ yield
increasingly smooth approximations of the hinge loss.

1In fact, Zhang and Oles discuss the shifted Generalized Logistic. We introduce the un-
shifted version here, then discuss the shifted version later.
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Figure 1: The left graphic shows the Logistic loss (middle) and the Generalized
Logistic (GL) loss for γ = 1/3 (top) and γ = 3 (bottom). The right figure
shows the Logistic loss, but the axes have been scaled by a factor of 3. Note the
similarity of the scaled Logistic to the Generalized Logistic (γ = 3).

For our Maximum-Margin Logistic Regression, we use a shifted version of
the Generalized Logistic Loss. We subtract one from z so that the “hinge”
occurs at z = 1.

g+(z, γ) =
1
γ

log(1 + exp(γ(1− z))). (4)

We use a large value of γ (e.g. γ = 10) so that our loss function approximates
the Hinge loss. The minimization objective for MMLR is

JMMLR =
1
γ

n∑
i=1

log(1 + exp(γ(1− zi))) +
λ

2
~wT ~w, (5)

where zi = yi ·~xT
i ~w. Optimization of the parameters can be done efficiently with

first-order gradient descent-type techniques. Note that ∂g+(z,γ)
∂z = − exp(γ(1−z))

1+exp(γ(1−z)) .
The gradient of the objective is

∂JMMLR

∂wj
= −

n∑
i=1

exp(γ(1− zi))
1 + exp(γ(1− zi))

yixij + λwj . (6)

Note that this model could be used as part of an iterative method for learning
SVM parameters. Each round, γ is increased according to a pre-set schedule.
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