
Mixtures of Multinomials

Jason D. M. Rennie

jrennie@gmail.com

September 1, 2005∗

Abstract

We consider two different types of multinomial mixtures, (1) a word-
level mixture, and (2) a document-level mixture. We show that the word-
level mixture is, in fact, no different than a regular multinomial. How-
ever, the document-level mixture can produce distributions that a regular
multinomial cannot. We point out that Latent Dirichlet Allocation con-
tains a word-level mixture that can be collapsed into a single multinomial.
Finally, we discuss a natural parameter variant of the word-level mixture.

1 Mixtures of Multinomials

The multinomial model over term frequencies is defined as

P (~x|~µ) =
l!

∏

i xi!

n
∏

i=1

µxi

i , (1)

where xi is the number of times word i occurs, µi is the mean parameter for
word i (i.e. µi is the expected rate of occurrence), and l =

∑

i xi is the document
length. Note that the multinomial is conditioned on document length.

We can view the multinomial as the following generative process. We have a
hopper filled with balls. Each ball represents one of the n words and the hopper
and balls are designed so that the chance of pulling a ball labeled word i is µi.
Each hopper draw is a “word” event. Balls are replaced before the next draw.
We tally word counts, but no not keep track of order information. The resulting
set of counts is a “document” event.

1.1 Word-Level Mixtures

For a word-level mixture, we use two hoppers, α and β, each designed to generate
word events according to its parameter vector. For each “word” event, we draw
one ball from each hopper, but only count one of the balls. With probability λ,
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we count the ball drawn from the α hopper, otherwise we count the ball drawn
from the β hopper. The distribution specified by this model is

Q(~x|λ, ~α, ~β) =
l!

∏

i xi!

n
∏

i=1

(λαi + (1 − λ)βi)
xi . (2)

Clearly, a multinomial with parameter vector λ~α + (1 − λ)~β specifies the same
distribution.

1.2 Document-Level Mixtures

For a document-level mixture, we again use two hoppers, α and β. However, this
time we randomly select one hopper for the entire set of word-level draws. With
probability λ, we select α. Thus, the distribution specified by this document-
level mixture is simply the convex combination of two multinomials:

R(~x|λ, ~α, ~β) = λP (~x|~α) + (1 − λ)P (~x|~β). (3)

We cannot write this as a single multinomial. To show this, we consider the
following parameter settings, λ = 0.5, ~α = (1, 0), and ~β = (0, 1). For a length 2
document, we get the following distribution:

R((0, 2)|λ, ~α, ~β) = 0.5 R((2, 0)|λ, ~α, ~β) = 0.5 R((1, 1)|λ, ~α, ~β) = 0 (4)

No multinomial can produce such a distribution.

1.3 Discussion

The word-level mixture is used in Latent Dirichlet Allocation (LDA) [1]. Blei
et al. write out the LDA model1 as

p(~w) =

∫

θ

(

N
∏

n=1

k
∑

zn=1

p(wn|zn; β)p(zn|θ)

)

p(θ; α)dθ, (5)

where θ is the vector of topic weights and β is the matrix of multinomial param-
eters (we assume that each column stores parameters for a multinomial). The
inner mixture (

∑

zn
) is a word-level mixture, so we can re-write the mixture as

a single multinomial,

p(~w) =

∫

θ

(

N
∏

n=1

p(wn|βθ)

)

p(θ; α)dθ. (6)

Note that βθ is a matrix-vector multiplication resulting in a multinomial pa-
rameter vector. Thanks to David Blei for noting that this observation was pre-
viously made by [2]. Buntine and Jakulin use the term “admixture” to describe
the word-level mixture. We note that Ueda and Saito’s Parametric Mixture
Model is a word-level mixture [4].

1Note that these scalar and parameter names do not correspond to the names used else-

where in this document.
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2 A Different Parameterization

So far, we have used the mean parameterization of the multinomial. I.e. the
(mean) parameters, ~µ, are proportional to the expected multinomial model out-
come,

EP (~x|~µ) [~x] = l~µ, (7)

where l is the fixed document length. Although this parameterization is intu-
itively pleasing, it is an awkward representation. The mean parameter vector
is constrained to be non-negative and sum to one; parameter values cannot be
changed individually; and, the number of dimensions of the parameter space
is one less than the length of the parameter vector. See Collins et al. for a
discussion of learning natural parameter mixtures for any exponential model
[3].

2.1 Natural Parameters

Here, we consider an alternate, “natural” parameterization. A model is in the
exponential family if it can be written as

log P (~x|~θ) = log P0(~x) + ~xT ~θ − G(~θ), (8)

where ~θ are the natural parameters of the model. Using this parameterization,
the multinomial distribution is

P (~x|~θ) =
l!

∏

i xi!

n
∏

i=1

(

exp(θi)
∑

i′ exp(θi′ )

)xi

, (9)

where P0(~x) = l!
Q

i
xi!

and G(~θ) = l log
[

∑

i′ exp(θi′)
]

. Note that if there are N

mean parameters, we only need N −1 natural parameters. To make translation
between the two parameterizations easier, we assume θN = 0. Given the natural

parameters for a multinomial model, the mean parameters are µi = exp(θi)
P

i′
exp(θ

i′
) .

2.2 Mixtures

Here we define what we call a natural parameter (multinomial) mixture. Like
the word-level mixture we discussed earlier, we mix at the parameter level. The
difference is that we mix natural parameters rather than mean parameters. Let
~θ and ~φ be the natural parameters for two multnomials. Then, our natural
parameter mixture is simply a multinomial with natural parameters equal to a
convex combination of the two original paramter vectors,

P (~x|λ~θ + (1 − λ)~φ) ∝
n
∏

i=1

(

exp(λθi + (1 − λ)φi)
∑

i′ exp(λθi′ + (1 − λ)φi′ )

)xi

, (10)
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Figure 1: Shown are the boundaries of regions enclosing all possible parameter
mixtures of the points (.9, .07, .03), (.07, .03, .9), and (.03, .9, .07), viewed in
the mean parameter space. The blue lines bound the region of possible mean
parameter mixtures (described as word-level mixtures earlier in this document).
The red dots bound the region of possible natural parameter mixtures. The
black lines bound the three-parameter simplex.

where 0 ≤ λ ≤ 1 is the mixture parameter. Note that this mixture does not
have the same interpretation as the “word-level” mixture we discussed earlier.
Like the word-level mixture, the natural parameter mixture can be written as a
single multinomial and can be viewed as a modification of the word-level prob-
abilities. However, it cannot be viewed as a convex combination of word-level
probabilities; instead, it is a geometric average of the word-level probabilities.
Figure 1 gives a pictoral view of mean and natural parameter mixtures. Viewed
in mean-parameter space, the boundaries of word-level mixtures form a triangle.
The boundaries for natural parameter mixtures look like a bowed triangle with
curved sides bent slightly inward; also, note the skew due to the placement of
the corners. Note that the natural parameter mixture is related to the Dirichlet
distribution.
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