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Abstract

We show how to derive the Expectation-Mazimization (EM) algorithm
for mixture models. In a general setting, we show how to obtain a lower
bound on the observed data likelihood that is easier to optimize. For a sim-
ple mixture example, we solve the update equations and give a “canned”
algorithm.

1 EM for Mixture Models

Consider a probability model with unobserved data, p(x, y|θ), where x repre-
sents observed variables and y represents unobserved varaibles. Expectation-
Maximization (EM) is an algorithm to find a local maximum of the likelihood
of the observed data. It proceeds in rounds. Each round, parameters are chosen
to maximize a lower-bound on the likelihood. The lower-bound is then updated
so as to be tight for the the new parameter setting.

Let θ(t) be the current parameter setting. The log-likelihood of the observed
data is

l(θ(t)) =
∑

i

log p(xi|θ(t)) =
∑

i

log
∑

y

p(xi, y|θ(t)). (1)

We want to find a new parameter setting, θ(t+1), that increases the log-likelihood
of the observed data. In other words, we want to maximize the difference
between the original log-likelihood and the new log-likelihood:

θ(t+1) = arg max
θ

l(θ)− l(θ(t)). (2)

Let Q(θ, θ(t)) = l(θ)− l(θ(t)). Note that p(y|xi, θ
(t)) = p(xi,y|θ(t))∑

y′ p(xi,y′|θ(t))
. Consider
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the following manipulations which result in a lower bound on Q:

Q(θ, θ(t)) =
∑

i

log

∑
y p(xi, y|θ)∑

y′ p(xi, y′|θ(t))
(3)

=
∑

i

log
∑

y

p(xi, y|θ(t))∑
y′ p(xi, y′|θ(t))

p(xi, y|θ)
p(xi, y|θ(t))

(4)

=
∑

i

log
∑

y

p(y|xi, θ
(t))

p(xi, y|θ)
p(xi, y|θ(t))

(5)

=
∑

i

log Ep(y|xi,θ(t))

[
p(xi, y|θ)

p(xi, y|θ(t))

]
(6)

≥
∑

i

Ep(y|xi,θ(t))

[
log

p(xi, y|θ)
p(xi, y|θ(t))

]
(7)

=
∑

i

∑
y

p(y|xi, θ
(t)) log

p(xi, y|θ)
p(xi, y|θ(t))

= L(θ, θ(t)). (8)

The inequality is a direct result of the concavity of the log function (Jensen’s
inequality). Call the lower bound L(θ, θ(t)).

Consider the following (trivial) fact for two arbitrary functions, f and g. Let
x∗ = arg maxx f(x). If f(x) is a lower bound on g(x) (i.e. f(x) ≤ g(x) ∀x),
and for some x, f(x) = g(x), then if f(x∗) > f(x), then g(x∗) > g(x). In
other words, if moving from x to x∗ provides an improvement in f , then it also
provides an improvement in g. We have constructed L as a lower bound on
Q such that L(θ(t), θ(t)) = Q(θ(t), θ(t)). Thus, if L(θ, θ(t)) > L(θ(t), θ(t)), then
Q(θ, θ(t)) > Q(θ(t), θ(t)).

Note that maximizing L(θ, θ(t)) with respect to θ does not involve the de-
nominator of the log term. In other words, the parameter setting that maximizes
L is

θ(t+1) = arg max
θ

∑
i

∑
y

p(y|xi, θ
(t)) log p(xi, y|θ). (9)

It is often easier to maximize L(θ, θ(t)) (with respect to θ) than it is to maxi-
mize Q(θ, θ(t)) (with respect to θ). For example, if p(xi, y|θ) is an exponential
distribution, L(θ, θ(t)) is a convex function of θ. For some models, we can solve
for the parameters directly, such as in the example discussed in the next section.

[1] is the original Expectation-Maximization paper. [2] discuss the conver-
gence properties and suggest a hybrid algorithm that switches between EM and
Conjugate Gradients based on an estimate of the “missing information.”

2 A Simple Mixture Example

Consider a two-component mixture model where the observations are sequences
of heads and tails. The unobserved variable takes on one of two values, y ∈
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{1, 2}. Three parameters define the joint distribution, θ = {λ1, φ1, φ2}. λ1

is the probability of using component #1 to generate the observations. φ1 is
the probability of heads for component #1; φ2 is the probability of heads for
component #2. We define λ2 = 1− λ1 for convenience. Let ni be the length of
observed sequence i; let hi be the number of heads. The joint likelihood is

p(xi, y|θ) = λyφhi
y (1− φy)(ni−hi). (10)

To maximize the observed data likelihood, we start from an initial setting of
the parameters, θ(0), and iteratively maximize the lower bound. Let

J(θ, θ(t)) =
∑

i

∑
y

p(y|xi, θ
(t)) log p(xi, y|θ) (11)

=
∑

i

∑
y

p(y|xi, θ
(t)) log λyφhi

y (1− φy)(ni−hi) (12)

Due to the structure of the function, we can solve for the optimal parameter
settings by simply setting the partial derivatives to zero. Let p1i = p(y =
1|xi, θ

(t)), p2i = p(y = 2|xi, θ
(t)). The partial derivative of J with respect to λ1

is
∂J

∂λ1
=

∑
i(p1i − λ1)

λ1(1− λ1)
(13)

Thus, the maximizing setting of λ1 is λ∗
1 = 1

m

∑m
i=1 p1i. The partial of J wrt

φ1 is

∂J

∂φ1
=

∑
i p1ihi − φ1

∑
i p1ini

φ1(1− φ1)
(14)

Thus, the maximizing setting of φ1 is φ∗
1 =

∑
i p1ihi∑
i p1ini

. Similarly, the maximizing

setting of φ2 is φ∗
2 =

∑
i p2ihi∑
i p2ini

. We set θ(t+1) = (λ∗
1, φ

∗
1, φ

∗
2) and repeat. Figure 1

gives a concise summary of the implementation of EM for this example.
The “canned” algorithms given in [3] (Appendix B) provide useful criteria

for determining convergence.
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• Randomly choose an inital parameter setting, θ(0).

• Let t = 0. Repeat until convergence.

– Let (λ1, φ1, φ2) := θ(t), λ2 := 1− λ1.

– Let pyi := λyφ
hi
y (1−φy)(ni−hi)∑

y′ λy′φ
hi
y′ (1−φy′ )

(ni−hi)
for y ∈ {1, 2}, i ∈ {1, . . . ,m}.

– Let λ∗
1 := 1

m

∑m
i=1 p1i

– Let φ∗
1 :=

∑
i p1ihi∑
i p1ini

.

– Let φ∗
2 :=

∑
i p2ihi∑
i p2ini

.

– Let θ(t+1) := (λ∗
1, φ

∗
1, φ

∗
2).

– Let t := t + 1.

Figure 1: A summary of using the EM algorithm for the simple mixture example.
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