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Abstract

We show how to derive the Expectation-Mazimization (EM) algorithm
for mixture models. In a general setting, we show how to obtain a lower
bound on the observed data likelihood that is easier to optimize. For a sim-
ple mixture example, we solve the update equations and give a “canned”
algorithm.

1 EM for Mixture Models

Consider a probability model with unobserved data, p(z,y|f), where z repre-
sents observed variables and y represents unobserved varaibles. Expectation-
Maximization (EM) is an algorithm to find a local maximum of the likelihood
of the observed data. It proceeds in rounds. Each round, parameters are chosen
to maximize a lower-bound on the likelihood. The lower-bound is then updated
so as to be tight for the the new parameter setting.

Let () be the current parameter setting. The log-likelihood of the observed
data is
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We want to find a new parameter setting, 6(**1), that increases the log-likelihood
of the observed data. In other words, we want to maximize the difference
between the original log-likelihood and the new log-likelihood:

60+ = argmax1(6) — 1(6%). (2)

Let Q(6,6®) = 1(8) —1(#1)). Note that p(y|z;, 01) = % Consider



the following manipulations which result in a lower bound on Q:
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The inequality is a direct result of the concavity of the log function (Jensen’s
inequality). Call the lower bound L(6,0®).

Consider the following (trivial) fact for two arbitrary functions, f and g. Let
x* = argmax, f(z). If f(x) is a lower bound on g(z) (ie. f(z) < g(x) Vz),
and for some T, f(Z) = g(T), then if f(z*) > f(T), then g(z*) > ¢(Z). In
other words, if moving from T to x* provides an improvement in f, then it also
provides an improvement in g. We have constructed L as a lower bound on
Q such that LW 0®) = QM ™). Thus, if L(6,0®)) > LOD®,0®), then
Q(0,01) > QO 0).

Note that maximizing L(6,0®) with respect to 6 does not involve the de-
nominator of the log term. In other words, the parameter setting that maximizes
Lis
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It is often easier to maximize L(6,0®")) (with respect to #) than it is to maxi-
mize Q(6,0™) (with respect to #). For example, if p(z;,y|d) is an exponential
distribution, L(#,6®) is a convex function of §. For some models, we can solve
for the parameters directly, such as in the example discussed in the next section.
[1] is the original Expectation-Maximization paper. [2] discuss the conver-
gence properties and suggest a hybrid algorithm that switches between EM and
Conjugate Gradients based on an estimate of the “missing information.”

2 A Simple Mixture Example

Consider a two-component mixture model where the observations are sequences
of heads and tails. The unobserved variable takes on one of two values, y €



{1,2}. Three parameters define the joint distribution, § = {A;,é1,d2}. A
is the probability of using component #1 to generate the observations. ¢, is
the probability of heads for component #1; ¢ is the probability of heads for
component #2. We define A\ = 1 — \; for convenience. Let n; be the length of
observed sequence i; let h; be the number of heads. The joint likelihood is

p(i,y]0) = Ayl (1 — )i =ho), (10)

To maximize the observed data likelihood, we start from an initial setting of
the parameters, 0(°), and iteratively maximize the lower bound. Let
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Due to the structure of the function, we can solve for the optimal parameter
settings by simply setting the partial derivatives to zero. Let py; = p(y =
1z, 0®), po; = p(y = 2|x;,0®). The partial derivative of .J with respect to A
is
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Thus, the maximizing setting of \; is AT = % it p1i. The partial of J wrt
(Z)l is

(13)
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Thus, the maximizing setting of ¢ is ¢ = %Z 12 Similarly, the maximizing
setting of ¢q is ¢} = %ZZ We set 00D = (Xf, ¢%, ¢3) and repeat. Figure 1
gives a concise summary of the implementation of EM for this example.
The “canned” algorithms given in [3] (Appendix B) provide useful criteria

for determining convergence.
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e Randomly choose an inital parameter setting, 6(%).
e Let t = 0. Repeat until convergence.

— Let ()\1,¢1,¢2) = G(t), )\2 =1 7)\1.

Aydy (1=,) ") ;
— Let py; := s rh fory e {1,2},ie{1,...,m}.
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Let ¢3 := S
~ Let ) = (X, 6. 63).
— Let t:=t+ 1.

Figure 1: A summary of using the EM algorithm for the simple mixture example.



