Some Linear Algebra Notes

Jason D. M. Rennie jrennie@gmail.com

August 26, 2005

Definition 1 A matrix A is positive semi-definite (PSD) iff for all vectors \vec{x} , $\vec{x}^T A \vec{x} \ge 0$.

Definition 2 The conjugate of a complex number z = a + bi is $\overline{z} = a - bi$.

Definition 3 A square matrix A is Hermitian if $A = A^H$, that is $A_{ij} = \overline{A}_{ji}$. For real matrices, Hermitian and symmetric are equivalent (and $A^H \equiv A^T$).

Theorem 1 A matrix A is PSD iff $\exists B$ such that $A = B^H B$.

Theorem 2 A matrix A is PSD iff \exists a Hermitian matrix C such that $A = C^2$.

Theorem 3 If A is PSD then A^{-1} exists and is PSD.

Theorem 4 If A is PSD, then \forall integer $k > 0 \exists$ a unique PSD matrix B with $A = B^k$. B also satisfies (1) AB = BA, (2) B = p(A) for some polynomial p, (3) rank(B) = rank(A), and (4) if A is real then so is B.

Theorem 5 The matrix $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ is PSD iff $b^2 < 4ac$.

Theorem 6 A real matrix A is PSD iff its symmetric part $B = (A + A^T)/2$ is PSD. Indeed $\vec{x}^T A \vec{x} = \vec{x}^T B \vec{x} \ \forall \vec{x}$.

Definition 4 λ is an eigenvalue of a square matrix A iff for some non-zero \vec{x} , $A\vec{x} = \lambda \vec{x}$. \vec{x} is called an eigenvector with corresponding eigenvalue λ . We define $\lambda_i(A)$ to be the *i*th largest eigenvalue of the matrix A.

Definition 5 The trace of a square matrix is the sum of its diagonal elements, $tr(A) = \sum_{i} A_{ii}$.

Theorem 7 Let A be square. Then $tr(A) = \sum_i \lambda_i(A)$.

Theorem 8 The eigenvalues of a Hermitian matrix are all real.

Definition 6 The spectral norm of a matrix A is the square root of the largest eigenvalue of $A^H A$, $||A||_2 = \sqrt{\lambda_1(A^H A)} = \max_{\|\vec{x}\| \neq 0} \frac{||A\vec{x}||_2}{\|\vec{x}\|_2}$.

Definition 7 Let $||\vec{x}||$ be a vector norm. The induced matrix norm is $||A|| = \max_{||\vec{x}||=1} ||A\vec{x}||$. The spectral norm is the L_2 induced matrix norm.