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Abstract

We derive the math (objective and gradients) for three closely-related
Gaussian-based data models. All three are based on Factor Analysis (FA).
The first is a simplification of FA; the second is FA itself; the third is our
extension of FA to use a smooth trace norm prior on the factor loading
matrix (in place of the hard rank constraint used by FA).

See [3] for some background on Factor Analysis (FA). See [1] for help with
matrix calculus.

1 Diagonal Covariance Matrix

We begin with the problem of learning parameters for a multivariate normal with
diagonal covariance matrix, N(µ, diag(1/ψ)). We use µ ∈ R

d to parameterize
the mean and ψ ∈ R

d to parameterize (the diagonal of) the inverse covarance
matrix. The likelihood of a set of n examples, X ∈ R

n×d, is

P (X |µ,ψ) =
∏

i

∏

j

√

ψj

(2π)d/2
exp



−
∑

j

ψj(Xij − µj)
2

2



 . (1)

The negative log-likelihood is

− logP (X |µ,ψ) =
1

2



nd log 2π +
∑

i,j

[

ψj(Xij − µj)
2 − logψj

]



 . (2)

1.1 Maximum Likelihood

Given a set of data, X ∈ R
n×d, one way of learning the parameters is via

maximum likelihood (ML). This works well for the mean parameter, µ, but if
one dimension of the data (one column of X) is constant, the empirical variance
is null and the inverse variance does not exist (or is infinite). Though we can
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technically work around this issue, a model trained on data with a zero-variance
dimension will assign zero density to any data with a value different than the
mean in the zero-variance dimension. We see this as a compelling reason to use
an alternate estimation method for the inverse covariance parameter, ψ.

1.2 Maximum a Posteriori

An alternative to maximum likelhood (ML) is maximum a posteriori (MAP).
Whereas ML selects the parameters which maximize the likelihood, MAP se-
lects parameters to maximize the posterior. We maximize the posterior by
maximizing a product of the likelihood and a prior. The posterior incorporates
a parameter prior, in our case a prior on inverse variance. An important decision
in MAP learning is the selection of the prior.

1.2.1 Selecting A Prior

The Wishart distribution,

P (W |V, n) =
|W |(n−d−1)/2|V |n/2

2nd/2Γd(n/2)
exp(−Tr(VW/2)), (3)

where W ∈ R
d×d and V ∈ R

d×d are positive definite and n ≥ d, is the conjugate
prior for Gaussian inverse covariance, so it is a natural choice. However, the
Wishart is normalized over the set of d× d positive definite matrices. We must
re-normalize in order to use it for our problem where we assume a diagonal
covariance matrix. Note that if W is diagonal, then off-diagonal entries of V
have no impact on the likelihood—we might as well assume V to be diagonal
too. Let W ≡ diag(ψ) and V ≡ diag(v). The pdf of our “diagonal” Wishart
distribution is

P (ψ|v, n) ∝ exp(−
∑

i

ψivi)
∏

i

ψn−1
i =

∏

i

ψn−1
i e−viψi (4)

Note that we have simplified the use of the n parameter. More importantly,
note that, if we allow n ∈ R+, this distribution is simply a product of gammas.
I.e. the normalization factor is

∫

∏

i

ψn−1
i e−viψidvdψ =

∏

i

vni
Γ(vi)

. (5)

We have shown that the Wishart is a generalization of the Gamma distribution
and that a product of Gammas is the conjuate prior for the Gaussian inverse
covariance when the covariance matrix is constrained to be diagonal. Hence, we
utilize the product of Gammas as our parameter prior. Next, we discuss its use
with MAP.
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1.2.2 Maximizing the Posterior

Use of a Wishart prior (or product of Gammas) has the effect of adding “simu-
lated” examples to our data set. We will use two numbers to parameterize the
prior. The first, α, represents the effective sample size of the simulated exam-
ples; the second, β, represents the sum of squared differences to the mean of the
simulated examples1. β

α represents the empirical variance of (each dimension
of) the simulated examples. We use a non-traditional parameterization of the
Gamma to align these meanings with the parameters,

P (ψ|α, β) =
∏

j

(β/2)(α/2+1)

Γ(α/2 + 1)
ψ
α/2
j e−ψjβ/2. (6)

To reconcile this parameterization with equations 4 & 5, make the substitutions
α/2 := n− 1 and β/2 := vi ∀i.

The product of likelihood and prior gives us the joint distribution,

P (X,ψ|α, β) = P (X |ψ)P (ψ|α, β). (7)

The parameters which maximize the joint are the same as those which maximize
the posterior. The parameters of the prior, α and β, are known as “hyper-
parameters.”

1.2.3 Derivatives

Estimation of the parameters for MAP can easily be accomplished via gradient
descent of the negative log-probability of the joint. Though, as we will find,
the MAP parameter solution can be read off from the derivatives. The joint
negative log-probability is

J = − logP (X,ψ|α, β) (8)

= C +

d
∑

j=1

ψj
2

(

β +

n
∑

i=1

(Xij − µj)
2

)

−

d
∑

j=1

n+ α

2
logψj ,

where C = d [log Γ(α/2 + 1) − (α/2 + 1) log(β/2)] + nd
2 log(2π). The gradient

with respect to the mean for dimension j is

∂J

∂µj
= ψj

n
∑

i=1

(Xij − µj). (9)

Note that this gradient is zero when µj is set to the empirical mean,

µ∗ =
1

n

n
∑

i=1

Xi. (10)

1We use a single β for all dimensions; when additional information about the data is
available, one might instead allow a different value for each dimension, β = (β1, . . . , βd).
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This is due to the fact that we are simply maximizing likelihood with respect
to the mean parameter. The gradient with respect to the inverse covariance
parameter is

∂J

∂ψj
=

1

2

[

β +

n
∑

i=1

(Xij − µj)
2 −

n+ α

ψj

]

. (11)

As with the mean parameter, we can directly solve for the inverse variance pa-
rameter, ψj by setting the gradient to zero, the only caveat being that the mean
parameter value must be given. However, the inverse variance parameter is not
set to the inverse of the empirical variance. Rather, it is set to a simulated
inverse empirical variance, where α simulated examples are added to the data
set; the α simulated examples each have a variance of β

α . The MAP parame-
ter setting is the inverse empirical variance of this combination of regular and
simulated data,

ψ∗ =
n+ α

β +
∑n

i=1(Xi − µ∗)2
. (12)

This is known to be a biased estimate of inverse variance. The unbiased estimate
is achieved by reducing the example count by one (using n + α − 1 in the
numberator). However, we will use the biased estimate; our estimation of the
hyper-parameters (next section) will compensate for error in the ML inverse
variance estimate.

1.3 Hyper-Parameters

We can use leave-one-out cross-validation (LOOCV) on the training set to se-
lect values for the hyper-parameters, α and β. For LOOCV, we maximize the
likelihood of the data, which is a product of the likelihoods for the individual
examples. But, when we calculate the likelihood for a given example, we exclude
that example in the data set used to calcualte the MAP parameters. Hence, the
name, “leave one out.”

Let µ\i and ψ\i denote the leave-one-out estimates for example i. Then, the
LOOCV negative log-likelihood is

JL = − logP (X |µ\i,ψ\i)

=
nd

2
log 2π +

1

2

n
∑

i=1

d
∑

j=1

[

ψ
\i
j

(

Xij − µ
\i
j

)2

− logψ
\i
j

]

, (13)

where µ
\i
j = 1

n−1

∑

k 6=iXlj , and ψ
\i
j = n+a−1

β+
P

k 6=i

“

Xkj−µ
\i

j

”

2 . We can solve for the

hyper-parameters α and β via gradient descent. The gradients are

∂JL

∂α
=

1

2

n
∑

i=1

d
∑

j=1







(

Xij − µ
\i
j

)2

β +
∑

k 6=i

(

Xkj − µ
\i
j

)2 −
1

n+ α− 1






, (14)
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and

∂JL

∂β
=

1

2

n
∑

i=1

d
∑

j=1











1

β +
∑

k 6=i

(

Xkj − µ
\i
j

)2 −
(n+ α− 1)

(

Xij − µ
\i
j

)2

[

β +
∑

k 6=i

(

Xkj − µ
\i
j

)2
]2











.

(15)

In other words, to achieve the minimum value of JL, α and β must be chosen
so that the average product of leave-one-out empirical variance with the leave-
one-out inverse variance parameter is unity,

1

nd

n
∑

i=1

d
∑

j=1

(n+ α− 1)
(

Xij − µ
\i
j

)2

β +
∑

k 6=i

(

Xkj − µ
\i
j

)2 = 1. (16)

The fact that the gradients yield only a single equation constraint indicates
that the solution is under-determined. We find a solution by setting α = 1 and
solving for β.

2 Factor Analysis

2.1 Notation

a, α scalar
a, α (row) vector
A matrix

diag(A) diagonal of A, taken as a row vector
diag(α) diagonal matrix, with diagonal elements taken from α

Aab scalar from ath row, bth column of A

A−1
ab scalar from ath row, bth column of A−1

A·b bth column of A (as a column vector)

Aa· ath row of A (as a row vector)
AB matrix multiplication
abT vector product

A ∗B, a ∗ b element-wise multiplication
A/B, a/b element-wise division
A+ a, A− a add/subtract a from each row of A

A ∗ a, A
a

multiply/divide each row of A by a

2.2 Definitions, Notes, and Sizes

• X ∈ R
n×d

• σ ∈ R
d
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• Λ ∈ R
d×k

• S ≡ ΛΛT + diag(ψ) ∈ R
d×d; S is symmetric, S = ST

2.3 Introduction

Here we consider the Factor Analysis model where the covariance matrix is a
sum of two matrices: (1) a diagonal matrix, and (2) a low-rank matrix. The
purpose of this section is to establish the math necessary to learn parameters
via gradient descent so that we can easily replace the hard rank constraint with
a soft trace norm prior (§ 3).

We use σ ∈ R
d to parameterize the diagonal matrix and Λ ∈ R

d×k to
parameterize the low-rank matrix. Λ is known as the “factor loading matrix.”
Our data likelihood is a Gaussian with covariance matrix ΛΛT+diag(σ2). Define
S ≡ ΛΛT + diag(σ2). Note that S is symmetric (S = ST ). The likelihood of a
set of n data points is

P (X |µ,σ,Λ) =
1

(2π)nd/2|S|n/2
exp

(

−
1

2

∑

i

(Xi· − µ)S−1(Xi· − µ)T

)

. (17)

2.4 Learning Parameters

As with the diagonal-covariance Gaussian model, there is concern that data
which is constant in a certain dimension will lead to a model which will reject
any new data which differs in that dimension. To temper the model, we apply a
common Gamma prior (6) to each entry of the diagonal of the inverse covariance
matrix. The pdf is

∏

j

P (S−1
jj |α, β) =

∏

j

(β/2)(α/2+1)

Γ(α/2 + 1)
(S−1
jj )α/2e−S

−1

jj
β/2. (18)

As before, we do not use a prior on the mean parameter (µ). Note that the
limited rank of Λ provides a form of regularization on the inverse covariance
matrix, S−1. Further regularization is not customarily used; we follow suit.

We learn parameters by maximizing the posterior (product of likelihood and
prior) or equivalently, minimizing the negative log-posterior,

J = P (X |µ,σ,Λ)P (diag(S−1)|α, β) (19)

= C +
1

2

(

n log |S| +

n
∑

a=1

(Xa − µ)S−1(Xa − µ)T +

d
∑

a=1

[

βS−1
aa − α logS−1

aa

]

)

,

where C is a constant (not a function of µ, σ, or Λ). We use gradient descent
to optimize the parameters. This requires calculation of the first-order gradient
of the objective with respect to the parameters. To simplify the full gradient
calculation, we break the objective into four parts:

J = C +
1

2
(J1 + J2 + J3 + J4) , (20)
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where

J1 = n log |S| (21)

J2 =
∑

a

(Xa − µ)S−1(Xa − µ)T =
∑

a,b,c

[Xa − µ]bS
−1
bc [Xa − µ]c. (22)

J3 = β
∑

a

S−1
aa (23)

J4 = −α
∑

a

logS−1
aa (24)

We first establish a number of intermediate partial derivative calculations:

• ∂Skl

∂σj
=

{

2σj if j = k = l,
0 otherwise

• ∂Skl

∂Λij
= ∂(ΛΛT )kl

∂Λij
=

∂(
P

a ΛkaΛla)

∂Λij
= δk=iΛlj + Λkjδl=i

• ∂aTMa
∂Mij

=
∑

k,l ak
∂Mkl

∂Mij
al = aiaj

• ∂(S−1)kl

∂Sij
= −

(

S−1 ∂S
∂Sij

S−1
)

kl
= −S−1

ki S
−1
jl (page 8 of [4])

Note: ∂(ABA)kl

∂Bij
=

∂(
P

a,b AkaBabAbl)
∂Bij

= AkiAjl

• ∂ log |S|
∂Sij

= S−1
ji (page 7 of [4], eqn. 10)

Note: ∂ log |S| = Tr(S−1∂S) =
∑

i,j S
−1
ji ∂Sij

Partial derivative of J1 with respect to (wrt) σ:

∂J1

∂σj
= n

∑

k,l

∂ log |S|

∂Skl

∂Skl
∂σj

= 2n
∂ log |S|

∂Sjj
σj = 2nS−1

jj σj (25)

∂J1

∂σ
= 2nσ ∗ diag(S−1) (26)

Partial derivative of J1 wrt Λ:

∂J1

∂Λij
= n

∑

k,l

∂ log |S|

∂Skl

∂Skl
∂Λij

= n
∑

k,l

S−1
lk (δk=iΛlj + Λkjδl=i) (27)

= n

[

∑

l

S−1
il Λlj +

∑

k

S−1
ik Λkj

]

= 2nS−1
i· Λ·j (28)

∂J1

∂Λ
= 2nS−1Λ (29)

Partial derivative of J2 wrt µ:

∂J2

∂µj
= −

∑

a,c

S−1
jc [Xa − µ]c −

∑

a,b

[Xa − µ]bS
−1
bj = −2

∑

a,b

[Xa − µ]bS
−1
bj (30)

∂J2

∂µ
= −2

∑

a

[Xa − µ]S−1
·j (31)
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Partial derivative of J2 wrt σ:

∂J2

∂σj
=

∑

a,b,c,k,l

[Xa − µ]b[Xa − µ]c
∂S−1

bc

∂Skl

∂Skl
∂σj

= 2
∑

a,b,c

[Xa − µ]b[Xa − µ]c
∂S−1

bc

∂Sjj
σj

= −2
∑

a,b,c

[Xa − µ]b[Xa − µ]cS
−1
bj S

−1
jc σj = −2

∑

a

S−1
j· [Xa − µ]T [Xa − µ]S−1

·j σj

= −2S−1
j· [X − µ]T [X − µ]S−1

·j σj (32)

∂J2

∂σ
= −2σ ∗ diag(S−1[X − µ]T [X − µ]S−1) (33)

Partial derivative of J2 wrt Λ:

∂J2

∂Λij
=

∑

a,b,c,k,l

[Xa − µ]b[Xa − µ]c
∂S−1

bc

∂Skl

∂Skl
∂Λij

(34)

= −
∑

a,b,c,k,l

[Xa − µ]b[Xa − µ]cS
−1
bk S

−1
lc (δk=iΛlj + Λkjδl=i) (35)

= −
∑

a,b,c,l

[Xa − µ]b[Xa − µ]cS
−1
bi S

−1
lc Λlj −

∑

a,b,c,k

[Xa − µ]b[Xa − µ]cS
−1
bk S

−1
ic Λkj

= −
∑

a,b,c,l

S−1
ib [Xa − µ]b[Xa − µ]cS

−1
cl Λlj −

∑

a,b,c,k

S−1
ic [Xa − µ]c[Xa − µ]bS

−1
bk Λkj

= −2
∑

a

S−1
i· [Xa − µ]T [Xa − µ]S−1Λ·j (36)

= −2S−1
i· [X − µ]T [X − µ]S−1Λ·j (37)

∂J2

∂Λ
= −2S−1[X − µ]T [X − µ]S−1Λ (38)

Partial derivative of J3 wrt σ:

∂J3

∂σj
= β

∑

a,k,l

∂S−1
aa

∂Skl

∂Skl
∂ψj

= 2β
∑

a

∂S−1
aa

∂Sjj
σj = −2β

∑

a

S−1
aj S

−1
ja σj (39)

= −2βS−1
j· S

−1
·j σj (40)

∂J3

∂σ
= −2βσ ∗ diag(S−1S−1) = −2βσ ∗ diag(S−2) (41)

Partial derivative of J3 wrt Λ:

∂J3

∂Λij
= β

∑

a,k,l

∂S−1
aa

∂Skl

∂Skl
∂Λij

= −β
∑

a,k,l

S−1
ak S

−1
la (δk=iΛlj + Λkjδl=i) (42)

= −β





∑

a,l

S−1
ia S

−1
al Λlj +

∑

a,k

S−1
ia S

−1
ak Λkj



 = −2βS−1S−1Λ (43)

∂J3

∂Λ
= −2βS−2Λ (44)
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Partial derivative of J4 wrt σ:

∂J4

∂σj
= −α

∑

a

∂ logS−1
aa

∂S−1
aa

∑

k,l

∂S−1
aa

∂Skl

∂Skl
∂σj

= −2α
∑

a

1

S−1
aa

∂S−1
aa

∂Sjj
σj (45)

= 2α
∑

a

S−1
aj S

−1
ja

S−1
aa

σj = 2α
S−1
j·

diag(S−1)
S−1
·j σj (46)

∂J4

∂σ
= 2ασ ∗ diag

(

S−1

diag(S−1)
S−1

)

(47)

Partial derivative of J4 wrt Λ:

∂J4

∂Λij
= −α

∑

a

∂ logS−1
aa

∂S−1
aa

∑

k,l

∂S−1
aa

∂Skl

∂Skl
∂Λij

(48)

= α
∑

a

1

S−1
aa

∑

k,l

S−1
ak S

−1
la (δk=iΛlj + Λkjδl=i) (49)

= α
∑

a

1

S−1
aa

[

∑

l

S−1
ia S

−1
al Λlj +

∑

k

S−1
ia S

−1
ak Λkj

]

(50)

= 2α
S−1
i·

diag(S−1)
S−1Λ·j (51)

∂J4

∂Λ
= 2α

S−1

diag(S−1)
S−1Λ (52)

3 Trace Norm Prior

Factor analysis utilizes a rank constraint on the factor loading matrix (Λ) to
provide regularization so that the model does not overfit the data. While the
constraint serves its purpose, there are two aspects that make it somewhat un-
desirable. The first is that the hard rank constraint introduces a non-convexity.
Note that the convex combination of two rank-one matrices may yield a rank-
two matrix. Optimization of the rank-constrained objective may be much more
susceptible to local minima than the unconstrained objective. The second un-
desirable trait is that the parameter of the constraint is discrete. It is quite
possible, if not likely, that the optimal (in terms of generalization) constraint be
“between” two discrete values (in, for example, the case that we could “relax”
the rank parameter).

Here we address these two issues by introducing a new form of regularization
on the factor loading matrix. Instead of placing a hard constraint on the rank
of the factor loading matrix, we introduce a prior which encourages low rank.
We call this the “trace norm prior” [5] since it acts as a penalty on the trace
norm2 of the matrix,

PΣ(X |λ) ∝ exp(−λ‖X‖Σ). (53)

2The trace norm of a matrix, X, denoted ‖X‖Σ or ‖X‖KF, is the sum of its singular values.
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We include this prior in our posterior. The updated negative log-posterior is

J = P (X |µ,σ,Λ)P (diag(S−1)|α, β)P (Λ|λ) (54)

= C +
1

2

(

n log |S| +
n
∑

a=1

(Xa − µ)S−1(Xa − µ)T +
d
∑

a=1

[

βS−1
aa − α logS−1

aa

]

)

+ λ‖Λ‖Σ,

where, again, C is constant with respect to µ, σ and Λ.
The use of the trace norm for solving rank-constrained problems was intro-

duced by [2] and has been successfully been applied to the task of collaborative
filtering [7, 6]. Since we are maximizing the posterior and thus need not calcu-
late the normalization constant, our use of the trace norm is nearly identical to
that of [6].

As noted by [6], we cannot calculate a gradient for J5 like we have the other
Ji:

‖X‖Σ is a complicated non-differentiable function for which it is not
eash to find the subdif[fe]rential. Finding good descent directions
for [the trace norm] is not easy.

But, as [6] conclude, we can substitute the trace norm with a variational bound
(for which we can easily calculate the gradient) and optimize this alternate
objective. Though it is unclear whether this methodology provides the same
solution as direct optimization of the trace norm, results from [6] indicate that
the variational bound is highly effective.

The variational bound is

‖UV T ‖ ≤
1

2

(

‖U‖2
Fro + ‖V ‖2

Fro

)

, (55)

where ‖U‖Fro is the Frobenius norm—the square root of sum of squared entries—
of U . To apply this to our objective, we make the substitution Λ ≡ UV T and
optimize U and V in place of Λ,

J(µ,σ, UV T ) ≤ J ′(µ,σ, U, V ) (56)

= C +
1

2

[

n log |S| +

n
∑

a=1

(Xa − µ)S−1(Xa − µ)T

+

d
∑

a=1

[

βS−1
aa − α logS−1

aa

]

+ λ
(

‖U‖2
Fro + ‖V ‖2

Fro

)

]

,

where S ≡ UV TV UT + diag(σ). To update our organization of the objective,
we define J5 ≡ λ(‖U‖2

Fro + ‖V ‖2
Fro). Then, J = C + 1

2 (J1 + J2 + J3 + J4 + J5).
All that remains is to calcualte the gradients of J1, . . . , J5 with respect to U
and V .

Note that

• ∂Skl

∂Uij
= ∂(UV TV UT )kl

∂Uij
=

∂(
P

a,b,c
UkaVbaVbcUlc)kl

∂Uij
=
∑

a,b(Ulaδk=i+Ukaδl=i)VbaVbj
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• ∂Skl

∂Vij
= ∂(UV TV UT )kl

∂Vij
=

∂(
P

a,b,c UkaVbaVbcUlc)kl

∂Vij
=
∑

a(UlaViaUkj+UkaViaUlj)

Partial derivative of J1 wrt U :

∂J1

∂Uij
= n

∑

k,l

∂ log |S|

∂Skl

∂Skl
∂Uij

= n
∑

k,l

S−1
lk

∑

a,b

(Ulaδk=i + Ukaδl=i)VbaVbj (57)

= n
∑

a,b,k,l

(S−1
kl Ulaδk=i + S−1

lk Ukaδl=i)VbaVbj (58)

∂J1

∂U
= 2nS−1UV TV (59)

Partial derivative of J1 wrt V :

∂J1

∂Vij
= n

∑

k,l

∂ log |S|

∂Skl

∂Skl
∂Vij

= n
∑

k,l

S−1
lk

∑

a

(UlaViaUkj + UkaViaUlj) (60)

= n
∑

a,k,l

(ViaU
T
alS

−1
lk Ukj + ViaU

T
akS

−1
kl Ulj) (61)

∂J1

∂V
= 2nV UTS−1U (62)

Partial derivative of J2 wrt U :

∂J2

∂Uij
=

∑

a,b,c,k,l

[Xa − µ]b[Xa − µ]c
∂S−1

bc

∂Skl

∂Skl
∂Uij

(63)

= −
∑

a,b,c,k,l

[Xa − µ]b[Xa − µ]cS
−1
bk S

−1
lc

∑

α,β

(Ulαδk=i + Ukαδl=i)VβαVβj

= −2
∑

α,β,a,b,c,l

S−1
ib [Xa − µ]b[Xa − µ]cS

−1
cl UlαV

T
αβVβj (64)

∂J2

∂U
= −2S−1[X − µ]T [X − µ]S−1UV TV (65)

Partial derivative of J2 wrt V :

∂J2

∂Vij
=

∑

a,b,c,k,l

[Xa − µ]b[Xa − µ]c
∂S−1

bc

∂Skl

∂Skl
∂Vij

(66)

= −
∑

a,b,c,k,l

[Xa − µ]b[Xa − µ]cS
−1
bk S

−1
lc

∑

α

(UlαViαUkj + UkαViαUlj)

= −2
∑

α,a,b,c,k,l

ViαU
T
αlS

−1
lc [Xa − µ]c[Xa − µ]bS

−1
bk Ukj (67)

∂J2

∂V
= −2V UTS−1[X − µ]T [X − µ]S−1U (68)
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Partial derivative of J3 wrt U :

∂J3

∂Uij
= β

∑

c,k,l

∂S−1
cc

∂Skl

∂Skl
∂Uij

= −β
∑

c,k,l

S−1
ck S

−1
lc

∑

a,b

(Ulaδk=i + Ukaδl=i)VbaVbj

= −2β
∑

c,a,b,l

S−1
ic S

−1
cl UlaV

T
abVbj (69)

∂J3

∂U
= −2βS−2UV TV (70)

Partial derivative of J3 wrt V :

∂J3

∂Uij
= β

∑

c,k,l

∂S−1
cc

∂Skl

∂Skl
∂Uij

= −β
∑

c,k,l

S−1
ck S

−1
lc

∑

a

(UlaViaUkj + UkaViaUlj) (71)

= −2β
∑

c,a,l,k

ViaU
T
alS

−1
lc S

−1
ck Ukj (72)

∂J3

∂U
= −2βV UTS−2U (73)

Partial derivative of J4 wrt U :

∂J4

∂Uij
= −α

∑

c

∂ logS−1
cc

∂S−1
cc

∑

k,l

∂S−1
cc

∂Skl

∂Skl
∂Uij

(74)

=
∑

c,k,l

1

S−1
cc

S−1
ck S

−1
lc

∑

a,b

(Ulaδk=i + Ukaδl=i)VbaVbj (75)

= 2α
∑

a,b,c,l

S−1
ic

S−1
cc

S−1
cl UlaV

T
abVbj (76)

∂J4

∂U
= 2α

S−1

diag(S−1)
S−1UV TV (77)

Partial derivative of J4 wrt V :

∂J4

∂Vij
= −α

∑

c

∂ logS−1
cc

∂S−1
cc

∑

k,l

∂S−1
cc

∂Skl

∂Skl
∂Vij

(78)

=
∑

c,k,l

1

S−1
cc

S−1
ck S

−1
lc

∑

a

(UlaViaUkj + UkaViaUlj) (79)

= 2α
∑

a,c,k,l

ViaU
T
al

S−1
lc

S−1
cc

S−1
ck Ukj (80)

∂J4

∂U
= 2αV UT

S−1

diag(S−1)
S−1U (81)
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Partial derivatives for J5:

∂J5

∂U
= 2λU (82)

∂J5

∂V
= 2λV. (83)

Using a variant of gradient descent (conjugate gradients), we can learn parame-
ters for our modified version of Factor Analysis which uses the trace norm prior
in place of the rank constraint.
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