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1 Bayesian Formulation

We are interested in a two-component mixture model where each component
itself is a distribution. The generative model is as follows. For each word in
a document of length, n, a mixture component is drawn, c ∼ Bernoulli(λ).
Then, a unigram parameter is drawn, µ ∼ Beta(αc, βc), where α1, β1 are the
parameters for component 1 and α2, β2 are the parameters for component 2.
Finally, a number of word occurrence is drawn, h ∼ Binomial(µ).

Let D be the set of documents. Let i index the documents. Let hi be the
number of occurrences (heads); let ni be the length (number of flips).

We want to find parameters (λ, α1, β1, α2, β2) to maximize the likelihood
of the observed data. We make a few definitions for convenience. Let

G(a, b) ,
Γ(a + b)
Γ(a)Γ(b)

, (1)

B(x|a, b) , G(a, b)xa−1(1− x)b−1, and (2)

U(h|n, x) , xhxn−h. (3)

Note that B(x; a, b) is a distribution. Also note that∫
U(h|n, x)B(x|a, b)dx =

G(a, b)
G(h + a, n− h + b)

. (4)

Let θ represent the parameters of the model. The likelihood of the data is

p(D|θ) =
∏

i

∫
p(hi|ni, µ)p(µ|θ)dµ. (5)

The first term is the simple unigram probability of seeing hi heads in ni flips
using a coin with µ probability of heads. The second term involves the mixture:

p(D|θ) =
∏

i

∫
U(hi|ni, µ)

[
λB(µ|α1, β1) + (1− λ)B(µ|α2, β2)

]
dµ, (6)

=
∏

i

(
λ

G(α1, β1)
G(hi + α1, ni − hi + β1)

+ (1− λ)
G(α2, β2)

G(hi + α2, ni − hi + β2)

)
.

(7)
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Figure 1: Shown is the generative model for a word. Nodes outside the rect-
angular box are constants. Nodes within the rectangle are generated once per
document.

This is the quantity which we are interested in maximizing. We make some
definitions that will make it easier to write down the derivatives. Let

G1 , G(α1, β1), H1i , G(hi + α1, ni − hi + β1), (8)

G2 , G(α2, β2), H2i , G(hi + α2, ni − hi + β2), and (9)

Zi , λG1/H1i + (1− λ)G2/H2i. (10)

Since the logarithm is a strictly monotone, increasing function, we can equiva-
lently maximize the log-likelihood:

l =
∑

i

log [λG1/H1i + (1− λ)G2/H2i] . (11)

We assume that we have a function that, given the current point and gradient at
that point returns a new point with higher likelihood. Left is for us to calculate
the gradient. First, we give the derivative with respect to λ,

∂l

∂λ
=

∑
i

G1/H1i −G2/H2i

Zi
. (12)

Note that Γ′(x) = Γ(x)Ψ(x), where Ψ(x) is the digamma function1. Some useful
derivatives are

∂G1

∂α1
= G1 [Ψ(α1 + β1)−Ψ(α1)] , (13)

∂H1i

∂α1
= H1i [Ψ(α1 + β1 + ni)−Ψ(α1 + hi)] , (14)

∂G1

∂β1
= G1 [Ψ(α1 + β1)−Ψ(β1)] , and (15)

∂H1i

∂β1
= H1i [Ψ(α1 + β1 + ni)−Ψ(β1 + ni − hi)] . (16)

1See, for example, Mathworld’s description, http://mathworld.wolfram.com/DigammaFunction.html.
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The derivatives with respect to the Beta parameters are all very similar:

∂l

∂α1
=

∑
i

λ

Zi

G1

H1i
[Ψ(α1 + β1)−Ψ(α1)−Ψ(α1 + β1 + ni) + Ψ(α1 + hi)]

∂l

∂α2
=

∑
i

1− λ

Zi

G2

H2i
[Ψ(α2 + β2)−Ψ(α2)−Ψ(α2 + β2 + ni) + Ψ(α2 + hi)]

∂l

∂β1
=

∑
i

λ

Zi

G1

H1i
[Ψ(α1 + β1)−Ψ(β1)−Ψ(α1 + β1 + ni) + Ψ(β1 + ni − hi)]

∂l

∂β2
=

∑
i

1− λ

Zi

G2

H2i
[Ψ(α2 + β2)−Ψ(β2)−Ψ(α2 + β2 + ni) + Ψ(β2 + ni − hi)]
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