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Abstract

One of the major successes in computational biology has been the unification, using the graphi-
cal model formalism, of a multitude of algorithms for annotating and comparing biological sequences.
Graphical models that have been applied towards these problems include hidden Markov models for
annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single al-
gorithm, the sum-product algorithm, solves many of the inference problems associated with different
statistical models. This paper introduces plodytope propagation algorithrfor computing the Newton
polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-
product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference
calculations for graphical models.

1 Inference with Graphical Models for Biological Sequence Analysis

This paper develops a new algorithm for graphical models based on the mathematical foundation for statis-
tical models proposed in [18]. Its relevance for computational biology can be summarized as follows:

(a) Graphical models are a unifying statistical framework for biological sequence analysis.

(b) Parametric inference is important for obtaining biologically meaningful results.

(c) The polytope propagation algorithm solves the parametric inference problem.

Thesis (a) states that graphical models are good models for biological sequences. This emerging un-
derstanding is the result of practical success with probabilistic algorithms, and also the observation that
inference algorithms for graphical models subsume many apparently non-statistical methods. A noteworthy
example of the latter is the explanation of classic alignment algorithms such as Needleman-Wunsch and
Smith-Waterman in terms of the Viterbi algorithm for pair hidden Markov models [3]. Graphical models are
now used for many problems including motif detection, gene finding, alignment, phylogeny reconstruction
and protein structure prediction. For example, most gene prediction methods are now hidden Markov model
(HMM) based, and previously non-probabilistic methods now have HMM based re-implementations.

In typical applications, biological sequences are modelesbasrved random variableg.Y..,Y, in a
graphical model. The observed random variables may correspond to sequence elements such as nucleotides
or amino acids.Hidden random variables ..., Xm encode information of interest that is unknown, but
which one would like to infer. For example, the information could be an annotation, alignment or ances-
tral sequence in a phylogenetic tree. One of the strengths of graphical models is that by virtue of being
probabilistic, they can be combined into powerful models where the hidden variables are more complex.
For example, hidden Markov models can be combined with pair hidden Markov models to simultaneously



align and annotate sequences [1]. One of the drawbacks of such approaches is that the models have more
parameters and as a result inferences could be less robust.
For a fixed observed sequenzgos, . .. 0, andfixed parameterghe standard inference problems are:

1. the calculation ofmarginal probabilities

po'l.“o'n — Z PI’OdX]_ — h17 e ,Xn'] — hm,Y]_ — 0-17 e ,Yn — O-n)
hy,

2. the calculation ofnaximum a posteriori log probabilities

Ooy0y = hm?rr]]m—log(Prok(Xl =hy,....,. Xn=hm,Y1=01,...,.Ya=0n)),

where theh; range over all the possible assignments for the hidden random varkblagpractice, it is the
solution to Problem 2 that is of interest, since it is the one that solves the problem of finding the genes in a
genome or the “best” alignment for a pair of sequences. A shortcoming of this approach is that the solution
h = (hy,...,hm) may vary considerably with a change in parameters.

Thesis (b) suggests thatpmrametricsolution to the inference problem can help in ascertaining the
reliability, robustness and biological meaning of an inference resulpaBgmetric inferenceve mean the
solution of Problem 2 for all model parameters simultaneously. In this way we can decide if a solution
obtained for particular parameters is an artifact or is largely independent of the chosen parameters. This
approach has already been applied successfully to the problem of pairwise sequence alignment in which
parameter choices are known to be crucial in obtaining good alignments [5, 12, 24]. Our aim is to develop
this approach for arbitrary graphical models. In thesis (c) we claim that the polytope propagation algorithm
is efficient for solving the parametric inference problem, and, in certain cases is not much slower than
solving Problem 2 for fixed parameters. The algorithm is a geometric version of the sum-product algorithm,
which is the standard tool for inference with graphical models.

The mathematical setting for understanding the polytope propagation algoritiopisal geometry
The connection between tropical geometry and parametric inference in statistical models is developed in the
companion paper [18]. Here we describe the details of the polytope propagation algorithm (Section 3) in two
familiar settings: the hidden Markov model for annotation (Section 2) and the pair hidden Markov model
for alignment (Section 4). Finally, in Section 5, we discuss some practical aspects of parametric inference,
such as specializing parameters, the construction of single cones which eliminates the need for identifying
all possible maximum a posteriori explanations, and the relevance of our findings to Bayesian computations.

2 Parametric Inference with Hidden Markov Models

Hidden Markov models play a central role in sequence analysis, where they are widely used to annotate DNA
sequences [2]. A simple example is the CpG island annotation problem [4, 83]. CpG sites are locations in
DNA sequences where the nucleotide cytosine (C) is situated next to a guanine (G) nucleotide (the “p” comes
from the fact that a phosphate links them together). There are regions with many CpG sites in eukaryotic
genomes, and these are of interest because of the action of DNA methyltransferase, which recognizes CpG
sites and converts the cytosine into 5-methylcytosine. Spontaneous deamination causes the 5-methylcytosine
to be converted into thymine (T), and the mutation is not fixed by DNA repair mechanisms. This results in

a gradual erosion of CpG sites in the genor@pG islandsare regions of DNA with many unmethylated



CpG sites. Spontaneous deamination of cytosine to thymine in these sites is repaired, resulting in a restored
CpG site. The computational identification of CpG islands is important, because they are associated with
promoter regions of genes, and are known to be involved in gene silencing.

Unfortunately, there is no sequence characterization of CpG islands. A generally accepted definition due
to Gardiner-Garden and Frommer [8] is that a CpG island is a region of DNA at least 200bp long with a G+C
content of at least 50%, and with a ratio of observed to expected CpG sites of at least 0.6. This arbitrary
definition has since been refined (e.g. [23]), however even analysis of the complete sequence of the human
genome [16] has failed to reveal precise criteria for what constitutes a CpG island. Hidden Markov models
can be used to predict CpG islands [4, 83]. We have selected this application of HMMs in order to illustrate
our approach to parametric inference in a mathematically simple setting.

The CpG island HMM we consider hashidden binary random variable§, andn observed random
variablesy; that take on the valueA,C,G, T} (see Figure 1 in [18]). In general, an HMM can be charac-
terized by the following conditional independence statementis$at, . .., n:

POXi | X1, X2,.... Xi—1) = p(Xi|Xi—1),
POYi| Xe, ., X%, Y1, Y1) = p(Yi[X).

The CpG island HMM has twelve model parameters, namely, the entries of the transition matrices

S_ (Soo S01> and T = <t0A toc toc t0T>'
S0 S11 tin tic tic tr

Here the hidden state space has just two states non=Cp@nd CpG= 1 with transitions allowed between

them, but in more complicated applications, such as gene finding, the state space is used to model numerous
gene components (such as introns and exons) and the sparsity pattern of theShtixicial. In its
algebraic representation [18, §82], the HMM is given as the image of the polynomial map

f . Rlz - R4n7 (ST) = z thlclshlhzthzo'zshzhfg e Shn,lhnthnO'n‘ (1)
he{o,1}n

The inference problem 1 asks for an evaluation of one coordinate polynégraalthe mapf. This can be
done in linear time (im) using theforward algorithm[13], which recursively evaluates the formula

1 1 1 1
fo = Z thon < z Shn_1hnthy 1001 ( z thzhsshzcz( Z thlhzshlcl)) > (2)
hn=0 hn'1= ho=0 h1=0
Problem 2 is to identify the largest term in the expansiori@of Equivalently, if we writeu;; = —log(sij)
andvij = —log(tj;) then Problem 2 is to evaluate the piecewise-linear function

Jo = MiNn,Vh,a, + (minhn—luhn—lhn FVh_10n 1 T (minhzvhzhs + Unyg, + (MiNk, Unghy +Vh101)) T ) 3)

This formula can be efficiently evaluated by recursively computing the parenthesized expressions. This is
known as theéviterbi algorithmin the HMM literature. The Viterbi and forward algorithms are instances of
the more generaum-product algorithnfil4].
What we are proposing in this paper is to compute the collection of cofi®$ mn which the piecewise-
linear functiongg is linear. This may be feasible because the number of cones grows polynomialach
cone is indexed by a binary sequeitice {0, 1}" which represents the CpG islands found for any system of
parametersu;j,vij) in that cone. A binary sequence which arises in this manner éxplanation foro in
the sense of [18, 84]. Our results in [18] imply that the number of explanations scales polynomialty with



Theorem 1. For any given DNA sequenceof length n, the number of bit strindse {0,1}" which are
explanations for the sequencen the CpG island HMM is bounded above by a constant tini&és.n

Proof. There are a total of 24+ 4 = 12 parameters which is the dimension of the ambient space. Note,
however, that for a fixed observed sequence the number of times the obseA/édiomade is fixed, and
similarly forC, G, T. Furthermore, the total number of transitions in the hidden states mustreJuajether,
these constraints remove five degrees of freedom. We can thus apply [18, Theoremdriwiith-5 = 7.

This shows that the total number of vertices of the Newton polytopk 66 O(ns) = O(n®25). O

A

Figure 1: The Schlegel diagram of the Newton polytope of an observation in the CpG island HMM.

We explain the biological meaning of our parametric analysis with a very small example. Let us consider
the following special case of the CpG island HMM. First, assumetthat tir and thatic = tig, i.e., the
output probability depends only on whether the nucleotide is a purine or pyrimidine. Furthermore, assume
thattoa = tog, Which means that the probability of emitting a purine or a pyrimidine in the non-CpG island
state is equal (i.e. base composition is uniform in non-CpG islands).

Suppose that the observed sequenceisAATAGCGG We ask forall the possible explanations for
o, that is, for all possible maximum a posteriori CpG island annotations for all parameters. A priori, the
number of explanations is bounded BYy=2256, the total number of binary strings of length eight. However,
of the 256 binary strings, only 25 are explanations. Figure 1 is a geometric representation of the solution
to this problem: the Newton polytope df is a 4-dimensional polytope with 25 vertices. The figure is a
Schlegel diagranof this polytope. It was drawn with the software POLYMAKE [9, 10]. The 25 vertices
in Figure 1 correspond to the 25 annotations, which are the explanatioasafothe parameters vary. Two
annotations are connected by an edge if and only if their parameter cones share a wall. From this geometric
representation, we can determine all parameters which result in the same maximum a posteriori prediction.



3 Polytope Propagation

The evaluation ofy; for fixed parameters using the formulation in (3) is known as the Viterbi algorithm in
the HMM literature. We begin by re-interpreting this algorithm as a convex optimization problem.

Definition 2. The Newton polytope of a polynomial

n

aui i Adi

fxe,...,xq) = Elci-xll"xz'-uxd'
i=

is defined to be the convex hull of the lattice pointRfhcorresponding to the monomials in f:

NP(f) = conf{(ay1,a21,.--,8d1), " ,(@Ln,8n;---,8dn)}-

Recall that for a fixed observation there are natural polynomials associated with a graphical model,
which we have been denoting By. In the CpG island example from Section 2, these polynomials are the
coordinated of the polynomial mag in (1). Each coordinate polynomidf; is the sum of 2 monomials,
wheren = |o|. The crucial observation is that even though the number of monomials grows exponentially
with n, the number of vertices of the Newton polytoN®( f;) is much smaller. The Newton polytope is
important for us because its vertices represent the solutions to the inference problem 2.

Proposition 3. The maximum a posteriori log probabilitidg in Problem 2 can be determined by minimiz-
ing a linear functional over the Newton polytope @f f

Proof. This is nothing but a restatement of the fact that when passing to logarithms, monomials in the
parameters become linear functions in the logarithms of the parameters. O

Our main result in this section is an algorithm which we state in the form of a theorem.

Theorem 4 (Polytope propagation).Let f; be the polynomial associated to a fixed observaticinom
a graphical model. The list of all vertices of the Newton polytopegso€ain be computed efficiently by
recursive convex hull and Minkowski sum computations on unions of polytopes.

Proof. Observe that iff1, f, are polynomials theNP(f; - f;) = NP(f1) + NP(f2) where thet+ on the right

hand side denotes the Minkowski sum of the two polytopes. Simil&|(f, + f2) = conv(NP(f;)U

NP( fz)) if f; andf, are polynomials with positive coefficients. The recursive descriptioiy given in (2)

can be used to evaluate the Newton polytope efficiently. The necessary geometric primitives are precisely
Minkowski sum and convex hull of unions of convex polytopes. These primitives run in polynomial time
since the dimension of the polytopes is fixed. This is the case in our situation since we consider graphical
models with a fixed number of parameters. We can hence run the sum-product algorithm efficiently in the
semiring known as thpolytope algebraThe size of the output scales polynomially by [18, Thm. 7].0J

Figure 2 shows an example of the polytope propagation algorithm for a hidden Markov model with all
random variables binary and with the following transition and output matrices:

S= (SOO 1) and T:<SOO 1).
1 s11 1 sip
Here we specialized to only two parameters in order to simplify the diagram. When we run polytope propa-

gation for long enough DNA sequence$ the CpG island HMM of Section 2 with all 12 free parameters,
we get a diagram just like Figure 2, but with each polygon replaced by a seven-dimensional polytope.
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Figure 2. Graphical representation of the polytope propagation algorithm for a hidden Markov model. For
a particular pair of parameters, there is one optimal Viterbi path (shown as large vertices on the polytopes).

It is useful to note that for HMMs, the Minkowski sum operations are simply shifts of the polytopes,
and therefore the only non-trivial geometric operations required are the convex hulls of unions of polytopes.
The polytope in Figure 1 was computed using polytope propagation. This polytope has dimension 4 (rather
than 7) because the sequeitce AAT AGCGGs so short. We wish to emphasize that the small size of our
examples is only for clarity; there is no practical or theoretical barrier to computing much larger instances.

For general graphical models, the running time of the Minkowski sum and convex hull computations
depends on the number of parameters, and the number of vertices in each computation. These are clearly
bounded by the total number of verticesNiP( f5), which are bounded above by [18, Theorem 7]:

#vertice$NP(f;)) < constantEd@-1/(d+1) < constantEd~2.

HereE is the number of edges in the graphical model (often linear in the number of vertices of the model).
The dimensiord of the Newton polytopeNP(fs) is fixed because it is bounded above by the number of
model parameters. The total running time of the polytope propagation algorithm can then be estimated
by multiplying the running time for the geometric operations of Minkowski sum and convex hull with the
running time of the sum-product algorithm. In any case, the running time scales polynomilly in

We have shown in [18, 84] that the verticedNI®( f5) correspond to explanations for the observation
In parametric inference we are interested in identifying the parameter regions that lead to the same expla-
nations. Since parameters can be identified with linear functionals, it is the case that the set of parameters
that lead to the same explanation (i.e. a vexfeare those linear functionals that minimizewanThe set of
these linear functionals is thr@rmal cone of NPfy) at v. The collection of all normal cones at the various
verticesv forms thenormal fanof the polytope. Putting this together with Proposition 3 we obtain:

Proposition 5. The normal fan of the Newton polytope gfsblves the parametric inference problem for an



observationo in a graphical model. It is computed using the polytope propagation algorithm.

An implementation of polytope propagation for arbitrary graphical models is currently being developed
within the geometry software package POLYMAKE [9, 10] by Michael Joswig.

4 Parametric Sequence Alignment

Thesequence alignmeptoblem asks to find the best alignment between two sequences which have evolved
from a common ancestor via a series of mutations, insertions and deletions. Formally, given two sequences
ol = olol- ..ol and 0% = 0203 -- 02, over the alphabef0,1,...,| — 1}, analignmentis a string over

the alphabe{M,|,D} such that M +#D = n and #M +# = m. Here #M # ,#D denote the number of
charactersM, |, D in the word respectively. An alignment records the “edit steps” from the sequertoe

the sequence?, where edit operations consist of changing characters, preserving them, or inserting/deleting
them. Anl in the alignment string corresponds to an insertion in the first sequelites a deletion in the

first sequence, and av is either a character change, or lack thereof. We wifitg, for the set of all
alignments. For a giveh € 4, we will denote thejth character irh by h;, we write hi] for #M +#l in

the prefixhih, ... h;, and we writeh(j) for #M +#D in the prefixhih,. .. h;. The cardinality of the sefl,m

of all alignments can be computed as the coefficien™f' in the generating function/I1—x—y—xy).

These coefficients are known Bglannoy humberi combinatorics [21, §6.3].

Bayesian multi-netere introduced in [6] and are extensions of graphical models via the introduction of
class nodes, and a set of local networks corresponding to values of the class nodes. In other words, the value
of a random variable can change the structure of the graph underlying the graphical mogsdirfigden
Markov mode(see Figure 3) is an instance of a Bayesian multinet. In this model, the hidden states (unshaded
nodes forming the chain) take on one of the valMes, D. Depending on the value at a hidden node, either
one or two characters are generated; this is encoded by plates (squares around the observed states) and class
nodes (unshaded nodes in the plates). The class nodes take on the values 0 or 1 corresponding to whether or
not a character is generated. Pair hidden Markov models are therefore probabilistic models of alignments,
in which the structure of the model depends on the assignments to the hidden states.

Our next result gives the precise description of the pair HMM for sequence alignment in the language
of algebraic statistics, namely, we represent this model by means of a polynomidl mapo?, o2 be the
output strings from a pair hidden Markov model (of lengthis respectively). Then:

Ih|
free = ) thl(crlu[lpcﬁuﬂ ' rlshi—lhi T (Gﬁ[ipoﬁm% (4)
heAnm i=
wheres;,, ,p, is the transition probability from state_; to h; andty, (o}ﬂi],oﬁm) are the output probabilities
for a given statéy, and the corresponding output characters on the stahgs’.

Proposition 6. The pair hidden Markov model for sequence alignment is the image of a polynomial map
f: R92+? _, RI™™ The coordinates of f are polynomials of degree m-+ 1 in (4).

We need to explain why the number of parameters+#<2D-+ 2. First, there are nine parameters

SvmM  SmI SvD
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Figure 3: A pair hidden Markov model for sequence alignment.

which play the same role as in Section 2, namely, they represent transition probabilities in the Markov chain.
There ard? parametersy (a,b) =: tyap for the probability that lettea in a* is matched with letteb in 2.
The insertion parametets(a,b) depend only on the lettdy, and the deletion parametetis(a,b) depend
only on the lettem, so there are onlyl2f these parameters. In the upcoming example, which explains the
algebraic representation of Proposition 6, we use the abbrevidfijpaadtp, for these parameters.
Consider two sequences' = ij ando? = kim of lengthn = 2 andm = 3 over any alphabet. The
number of alignments is (#,m) = 25, and they are listed in Table 1. The polynomigl ;. is the sum
of the 25 monomials (of degree ®5) in the rightmost column. For instance, if we consider strings over
the binary alphabef0,1}, then there are 17 parameters (nérgarameters and eigtiparameters), and the
pair HMM for alignment is the image of a map: R — R32. The coordinate of which is indexed by
(i, ],k 1,m) € {0,1}° equals the 25-term polynomial gotten by summing the rightmost column in Table 1.
The parametric inference problem for sequence alignment is solved by computing the Newton polytopes
NP(fs,.0,) With the polytope propagation algorithm. In the terminology introduced in [18, §4], an obser-
vationo in the pair HMM is the pair of sequencéss,02), and the possible explanations are the optimal
alignments of these sequences with respect to the various choices of parameters. In summary, the vertices
of the Newton polytop&l P( s, o,) correspond to the optimal alignments. If the observed sequences
are not fixed then we are in the situation of [18, Proposition 6]. Each parameter choice defines a function
from pairs of sequences to alignments:

~

{0,....1 —-1}"x {0,....| =1} — Apm, (01,02) — h.

The number of such functions grows doubly-exponentiallg andm, but only a tiny fraction of them are
inference functionswhich means they correspond to the vertices of the Newton polytope of thé .niap
an interesting combinatorial problem to characterize the inference functions for sequence alignment.

An important observation is that our formulation in Problem 2 is equivalent to combinatorial “scoring
schemes” or “generalized edit distances” which can be used to assign weights to alignments [3]. For exam-
ple, the simplest scoring scheme consists of two parameters: a mismatcimsg@med an indel scorgap
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[IDID
[IDDI
IDIID
IDIDI
IDDII
DIID
DIIDI
DIDII
DDl
MIID
MIDI
MDII
IMID
IMDI
[IMD
[IDM
IDMI
IDIM
DMII
DIMI
DIIM
MMI

MIM

IMM

tikSit SitimSiptoiSoptoj
tikSiti SiptoiSpitimSiptp;
tikSiti SiotoiSoptpjSpitim
tikSptoiSoiti SitimSipto;
tikSptoisoiti SotojSpitim
tikSptoiSoptojSpiti Sitim
toisoitikSiti SitimSptp;j
toispitikSitiSiotojSpitim
toisoitikSiptojSoiti Sitim
tpiSoptojSpitikSi i Sitim
tmikSmiti SiitimSipto;j
tmikSviti SptpjSoitim
tmikSmptpjSpiti Sitim
tikSmImil SMitimSID D]
tikSmtmil SuptpjSpitim
tikSi 1 SMtMimSMDLD|
tikSi 1 SptbiSpmtmjm
tikSptoiSomimil Smitim
tikSiotoiSpiti SMimijm
toiSomtmikSmitiiSirtim
toiSoitikSmimji Smitim
toispitikSitii SmMimjm
tMikSvMIMji Smitim
tmikSmiti SIMIMjm
tikSmtmil SuMIM jm

Table 1: Alignments for a pair of sequences of length 2 and 3.
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[5, 11, 24]. The weight of an alignment is the sum of the scores for all positions in the alignment, where a
match is assigned a score of 1. This is equivalent to specializing the logarithmic pardtheteréog(S)
andV = —log(T) of the pair hidden Markov model as follows:

Uj =0, wwij=11ifi=], wijj =misifi# j,and v;j = vpj =gap foralli, j. (5)

This specialization of the parameters corresponds to intersecting the normal fan of the Newton polytope
with a two-dimensional affine subspace (whose coordinates are aaibethdgap).

Efficient software for parametrically aligning the sequences with two free parameters already exists
(XPARAL [12]). Consider the example of the following two sequena@s= AGGACCGAT TACAGT TCAA
ando? = TTCCTAGGT TAAACCTCAT GCXPARAL will return four cones, however a computation of
the Newton polytope reveals seven vertices (three correspond to posisee gapvalues). The polytope
propagation algorithm has the same running time as XPARAL.: for two sequences oferythe method
requiresO(nm) two-dimensional convex hull computations. The number of points in each computation is
bounded by the total number of points in the final convex hull (or equivalently the nuikpef, expla-
nations). Each convex hull computation therefore requires at @@stlog(K)) operations, thus giving an
O(nmKlog(K)) algorithm for solving the parametric alignment problem. However, this running time can
be improved by observing that the convex hull computations that need to be carried out have a very special
form, namely in each step of the algorithm we need to compute the convex hull of two superimposed convex
polygons. This procedure is in fact a primitive of the divide and conquer approach to convex hull computa-
tion, and there is a well know@(K) algorithm for solving it [19, 83.3.5]. Therefore, for two parameters, our
recursive approach to solving the parametric problem yield®@mn) algorithm, matching the running
time of XPARAL and the conjecture of Waterman, Eggert and Lander [24].

In order to demonstrate the practicality of our approach for higher-dimensional problems, we imple-
mented a four parameter recursive parametric alignment solver. The more general alignment model includes
different transition/transversion parameters (instead of just one mismatch parameter), and separate parame-
ters for opening gaps and extending gaps. A transition is mutation from one pArar€s) to another, or
from one pyrimidine € or T) to another, and a transversion is a mutation from a purine to a pyrimidine or
vice versa. More precisely, if we 18, = {A,G} andR, = {C, T} the model is:

Uum =Um =Upm = O
Uvi =Uvp = gapopen
up =upp = gapextend
waij = 1ifi=]
wij = transtifi#j,andi,jeP,ori,jeR
vmij = transvifi# j,andi € P, j € By or vice versa
vij=vpi = Oforalli,j.

For the two sequences: anda? in the example above, the number of vertices of the four dimensional
Newton polytope (shown in Figure 4) is 224 (to be compared to 7 for the two parameter case).

5 Practical Aspects of Parametric Inference

We begin by pointing out that parametric inference is useful for Bayesian computations. Consider the
problem where we have a prior distributioiis) on our parameters= (si,...,S), and we would like to
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Figure 4: Edge graph of the Newton polytope for a four parameter alignment problem.

compute the posterior probability of a maximum a posteriori explanﬁtion
ProfX =h|Y =0) = /Protix =h|Y =0,s1,...,5)T(5)ds (6)
S

This is an important problem, since it can give a quantitative assessment of the vaIiHitiyn af setting

where we have prior, but not certain, information about the parameters, and also because we may want to
sampleﬁ according to its posterior distribution (for an example of how this can be applied in computational
biology see [17]). Unfortunately, these integrals may be difficult to compute. We propose the following
simple Monte Carlo algorithm for computing a numerical approximation to the integral (6):

Proposition 7. Select N parameter vectords. .., sN) according to the distributiom(s), where N is much
larger than the number of vertices of the Newton polytope iy Let K be the number ofis such that
—log(s'") lies in the normal cone of N[y) indexed by the explanatidn Then K/N approximates (6).

Proof. The expression Prgi = h|Y = 0,s;,...,5) is zero or one depending on whether the vector
—log(s) = (—log(s1),...,—log(sq)) lies in the normal cone dfIP( ) indexed byh. This membership test

can be done without ever running the sum-product algorithm if we precompute an inequality representation
of the normal cones. O
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The bound on the number of vertices of the Newton polytope in [18, 84] provides a valuable tool for
estimating the quality of this Monte Carlo approximation. We believe that the tropical geometry developed
in [18] will also be useful for more refined analytical approaches to Bayesian integrals. The study of Newton
polytopes can also complement the algebraic geometry approach to model selection proposed in [20].
Another application of parametric inference is to problems where the number of parameters may be very
large, but where we want to fix a large subset of them, thereby reducing the dimensions of the polytopes.
Gene finding models, for example, may have up to thousands of parameters and input sequences can be
millions of base pairs long however, we are usually only interested in studying the dependence of inference
on a select few. Although specializing parameters reduces the dimension of the parameter space, the expla-
nations correspond to vertices ofegular subdivision of the Newton polytgpather than just to the vertices
of the polytope itself. This is explained below (readers may also want to refer to [18] for more background).
Consider a graphical model with parametsefs..,sy of which the parameters,,...,s are free but
Si1=S4:1,...,.5 = & where theS are fixed non-negative numbers. Then the coordinate polynoriials
of our model specialize to polynomialsiirunknowns whose coefficientg are non-negative numbers:

fo(st,..,s) = fo(st,-.,8,S41,--,S) = Z‘Ca'sil"'S?".
acNr

The supportof this polynomial is the finite sefl; = {a€ N' : ca > 0}. The convex hull 0f4; in R" is

the Newton polytope of the polynomid} = ﬁ,(sl,...,sr). For example, in the case of the hidden Markov

model with output parameters specialized, the Newton polytop®; ¢ the polytope associated with a

Markov chain. Kuo [15] shows that the size of these polytopes does not depend on the length of the chain.
Let h be any explanation foo in the original model and letus, ..., ur,Ur+1,...,Uy) be the vertex of

the Newton polytope of; corresponding to that explanation. We abbreviate= (uz,...,u) and &, =

R Sgd. The assignmerth — a, defines a map from the set of explanations ¢b the support4;. The

+1 3
convex hull of the image coincides with the Newton polytopdafWe define

wa = min{ —log(S,) : his an explanation foo with a, =a}. (7)

If the specialization is sufficiently generic then this maximum is attained uniquely, and, for simplicity, we
will assume that this is the case. If a point 4, is not the image of any explanatitrthen we set, = co.

The assignmena — W, is a real valued function on the support of our polynonfigl and it defines a
regular polyhedral subdivisios\,, of the Newton polytop&l P( ﬂ,). Namely,Ay, is the polyhedral complex
consisting of all lower faces of the polytope gotten by taking the convex hull of the gaiwsg) in R"™*1.

See [22] for details on regular triangulations and regular polyhedral subdivisions.

Theorem 8. The explanations for the observatiorin the specialized model are in bijection with the vertices
of the regular polyhedral subdivisiofy, of the Newton polytope of the specialized polynonfial

Proof. The point(a,w,) is a vertex o, if and only if the following open polyhedron is non-empty:
P, = {ve R" 1 a-v+w, < @ -v+wy forallac 45\ {a} }

If vis a point inP, then we sets = exp(—v;) fori =1,...,r, and we consider the explanatibnwhich
attains the minimum in (7). Now all parameters have been specializell anthe solution to Problem 2.
This argument is reversible: any explanationdan the specialized model arises from one of the non-empty
polyhedraP,. We note that the collection of polyhedPa defines a polyhedral subdivision Bf which is
geometrically dual to the subdivisidk, of the Newton polytope of;. O
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In practical applications of parametric inference, it may be of interest to compute only one normal cone
of the Newton polytope (for example the cone containing some fixed parameters). We conclude this section
by observing that the polytope propagation algorithm is suitable for this computation as well:

Proposition 9. Let v be a vertex of a d-dimensional Newton polytope of a hidden Markov model. Then the
normal cone containing v can be computed using a polytope propagation algorithm in dimensibn d

Proof. We run the standard polytope propagation algorithm described in Section 4, but at each step we
record only the minimizing vertex in the direction of the log parameters, together with its neighboring
vertices in the edge graph of the Newton polytope. It follows, by induction, that given this information at
thenth step, we can use it to find the minimizing vertices and related neighbors (n ¢hg)st step. [

6 Summary
We envision a number of biological applications for the polytope propagation algorithm, including:

e Full parametric inference using the normal fan of the Newton polytope of an observation when the
graphical model under consideration has only few model parameters.

e Ultilization of the edge graph of the polytope to identify stable parts of alignments and annotations.

e Construction of the normal cone containing a specific parameter vector when computation of the full
Newton polytope is infeasible.

e Computation of the posterior probability (in the sense of Bayesian statistics) of an alignment or anno-
tation. The regions for the relevant integrations are the normal cones of the Newton polytope.

As we have seen, the computation of Newton polytopes for (interesting) graphical models is certainly
feasible for a few free parameters, and we expect that further analysis of the computational geometry should
yield efficient algorithms in higher dimensions. For example, the key operation, computation of convex hulls
of unions of convex polytopes, is likely to be considerably easier than general convex hull computations
even in high dimensions. Fukuda, Liebling and Lutlof [7] give a polynomial time algorithm for computing
extended convex hulls (convex hulls of unions of convex polytopes) under the assumption that the polytopes
are in general position. Furthermore, it should be possible to optimize the geometric algorithms for specific
models of interest, and combinatorial analysis of the Newton polytopes arising in graphical models should
yield better complexity estimates (see, e.g., [5, 11]). Michael Joswig is currently working on a general
polytope propagation implementation in POLYMAKE [9, 10].

In the case where computation of the Newton polytope is impractical, it is still possible to identify the
cone containing a specific parameter, and this can be used to quantitatively measure the robustness of the
inference. Parameters near a boundary are unlikely to lead to biologically meaningful results. Furthermore,
the edge graph can be used to identify common regions in the explanations corresponding to adjacent ver-
tices. In the case of alignment, biologists might see a collection of alignments rather than just one optimal
one, with common sub-alignments highlighted. This is quite different from returninigllest alignments,
since suboptimal alignments may not be vertices of the Newton polytope. The solution we propose explicitly
identifies all suboptimal alignments that can result from similar parameter choices.
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