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Abstract. The Bayes classifier achieves the minimal error rate by con-
structing a weighted majority over all concepts in the concept class. The
Bayes Point [1] uses the single concept in the class which has the min-
imal error. This way, the Bayes Point avoids some of the deficiencies of
the Bayes classifier. We prove a bound on the generalization error for
Bayes Point Machines when learning linear classifiers, and show that it
is at most ~ 1.71 times the generalization error of the Bayes classifier,
independent of the input dimension and length of training. We show
that when learning linear classifiers, the Bayes Point is almost identical
to the Tukey Median [2] and Center Point [3]. We extend these defini-
tions beyond linear classifiers and define the Bayes Depth of a classifier.
We prove generalization bound in terms of this new definition. Finally
we provide a new concentration of measure inequality for multivariate
random variables to the Tukey Median.

1 Introduction

In this paper we deal with supervised concept learning in a Bayesian framework.
The task is to learn a concept ¢ from a concept class C. We assume that the
target c is randomly chosen from C according to a known probability distribution
v. The Bayes classifier is known to be optimal in this setting, i.e. it achieves
the minimal possible expected loss. However the Bayes classifier suffers from
two major deficiencies. First, it is usually computationally infeasible, since each
prediction requires voting over all parameters. The second problem is the possible
inconsistency of the Bayes classifier [4], as it is often outside of the target class.
Consider for example the following scenario: Alice, Bob and Eve would like to
vote on the linear order of three items A, B and C. Alice suggests A < B < C,
Bob suggests C < A < B, and Eve suggests B < C < A. Voting among the three,
as the Bayes classifier does, will lead to A < B, B < C and C < A which does
not form a linear order.

The computational infeasibility and possible inconsistency of the Bayes op-
timal classifier are both due to the fact that it is not a single classifier from the
given concept class but rather a weighted majority among concepts in the class.
These drawbacks can be resolved if one selects a single classifier in the proper
class (or a proper ordering in the previous example). Indeed, once the single



concept is selected, its predictions are usually both efficient and consistent. It is,
however, no longer Bayes optimal. OQur problem is to find the single member of
the concept class which best approximates the optimal Bayes classifier.

Herbrich, Graepel and Campbell [1] have recently studied this problem. They
called the single concept which minimizes the expected error the Bayes Point.
Specifically for the case of linear classifiers, they designed the Bayes Point Ma-
chine (BPM), which employs the center of gravity of the version space (which
is convex in this case) as the candidate classifier. This method has been applied
successfully to various domains, achieving comparable results to those obtained
by Support Vector Machines [5].

1.1 The results of this paper

Theorem 1 provides a generalization bound for Bayes Point Machines. We show
that the expected generalization error of BPM is greater than the expected
generalization error of the Bayes classifier by a factor of at most (e — 1) ~ 1.71.
Since the Bayes classifier obtains the minimal expected generalization error we
conclude that BPM is “almost” optimal. Note that this bound is independent
of the input dimension and it holds for any size of the training sequence. These
two factors, i.e. input dimension and training set size, affect the error of BPM
only through the error of the optimal Bayes classifier. The error of Bayes Point
Machines can also be bounded in the online mistake bound model. In theorem 2
we prove that the mistake bound of BPM is at most m log %, where
n is the input dimension, R is a bound on the norm of the input data points,
and r is a margin term. This bound is different from Novikoff’s well known
mistake bound for the perceptron algorithm [6] of R?/r?. In our new bound,
the dependency on the ratio R/r is logarithmic, whereas Novikoff’s bound is
dimension independent.

The proofs of theorems 1 and 2 follow from a definition of the proximity of
a classifier to the Bayes optimal classifier. In the setting of linear classifier the
proximity measure is a simple modification of the Tukey Depth [2]. The Tukey
Depth measures the centrality of a point in IR™. For a Borell probability measure
v over IR" the Tukey Depth (or halfspace depth) of x € IR" is defined as

D(z) = inf {v (H) s.t. His half space andz € H} , (1)

i.e. the depth of x is the minimal probability of an half space which contains
x. Using this definition Donoho and Gasko [7] defined the Tukey Median as the
point z which maximizes the depth function D(x) (some authors refer to this
median as the Center Point [3]).

Donoho and Gasko [7] studied the properties of the Tukey Median. They
showed that the median always exists but need not be unique. They also showed
that for any measure v over IR", the depth of the Tukey Median is at least n+r1
Caplin and Nalebuff [4] proved the Mean Voter Theorem. This theorem (using
different motivations and notations) states that if the measure v is log-concave



then the center of gravity of v has a depth of at least 1/e. v is log-concave if it

conforms with
vAA+ (1=A)B) >v(A) v (B)' ™.

For example, uniform distributions over convex bodies are log-concave, normal
and chi-square distributions are log-concave as well. See [8] for a discussion and
examples of log-concave measures (a less detailed discussion can be found in
appendix A).

The lower bound of 1/e for the depth of the center of gravity for log-concave
measures is the key to our proofs of the bounds for BPM. The intuition behind
the proofs is that any "deep" point must generalize well. This can be extended
beyond linear classifiers to general concept classes. We define the Bayes Depth
of a hypothesis and show in theorem 3 that the expected generalization error of
any classifier can be bounded in terms of its Bayes Depth. This bound holds for
any concept class, including multi-class classifiers.

Finally we provide a new concentration of measure inequality for multivariate
random variables to their Tukey Median. This is an extension of the well known
concentration result of scalar random variables to the median [9].

This paper is organized as follows. In section 2 the Bayes Point Machine is
introduced and the generalization bounds are derived. In section 3 we extend
the discussion beyond linear classifiers. We define the Bayes Depth and prove
generalization bounds for the general concept class setting. A concentration of
measure inequality for multivariate random variables to their Tukey Median is
provided in section 4. Further discussion of the results is provided in section
5. Some background information regarding concave measures can be found in
appendix A. The statement of the Mean Voter Theorem is given in appendix B.

1.2 Preliminaries and Notation

Throughout this paper we study the problem of concept learning with Bayesian
prior knowledge. The task is to approximate a concept ¢ € C which was chosen
randomly using a probability measure v. The Bayes classifier (denoted by hopt)
assigns the instance x to the class with minimal expected loss:

hopt () = argmin B, [ (4. ()] @

where [ is some loss function [ : J)x) — IR. The Bayes classifier is optimal among
all possible classifiers since it minimizes the expected generalization error:

error (h) = Ey [Ecy [l (7 (2) , ¢ (2))]] 3)

The Bayes classifier achieves the minimal possible error on each individual in-
stance x and thus also when averaging over z. If a labeled sample is available
the Bayes classifier uses the posterior induced by the sample, and likewise the
expected error is calculated with respect to the same posterior. If the concepts in
C are stochastic then the loss in (2) and (3) should be averaged over the internal
randomness of the concepts.



2 Bayes Point Machine

Herbrich, Graepel and Campbell [1] introduced the Bayes Point Machine as a
tool for learning classifiers. They defined the Bayes Point as follows:

Definition 1. Given a concept class C, a loss functionl : Y x Y — IR and a
posterior v over C, the Bayes Point és:

arg I}?elg Eac [Ecwu [l (h(l‘), C(I))]]

Note that E, [Ec, [l (h(z),c(x))]] is the average error of the classifier h, as
defined in (3), and thus the Bayes Point, as defined in definition 1, is simply the
classifier in C which minimizes the average error, while the Bayes optimal rule
minimizes the same term without the restriction of choosing A from C.

When applying to linear classifiers with the zero-one loss function!, [1] as-
sumed a uniform distribution over the class of linear classifiers. Furthermore
they suggested that the center of gravity is a good approximation of the Bayes
Point. In theorem 1 we show that this is indeed the case. The center of gravity
is indeed a good approximation of the Bayes Point.

We will consider the case of linear classifiers through the origin. In this case
the sample space is IR and a classifier is half-space through the origin. Formally,
any vector 0 € IR" represents a classifier. Given an instance x € IR" the corres-
ponding label is +1 if - z > 0 and —1 otherwise. Note that if A > 0 then the
vector 6 and the vector A0 represent the same classifier; hence we may assume
that 6 is in the unit ball.

Given a sample of labeled instances, the Version Space is defined as the set
of classifiers consistent with the sample:

Version-Space = {6 : ||6]| <1 and y;0-2; >0 forall 1 <i<m}

This version space is the intersection of the unit ball with a set of linear con-
straints imposed by the observed instances and hence it is convex. The posterior
is the restriction of the original prior to the version space. Herbrich et al. [1]
suggested using the center of gravity of the version space as the hypothesis of
the learning algorithm which they named the Bayes Point Machine. They sug-
gested a few algorithms which are based on random walks in the version space
to approximate the center of gravity.

2.1 Generalization Bounds for Bayes Point Machines

Our main result is a generalization bound for the Bayes Point Machine learning
algorithm.

! The zero-one loss function is zero whenever the predicted class and the true class
are the same. Otherwise, the loss is one.



Theorem 1. Let v be a continuous log-concave measure® over the unit ball in

IR"™ (the prior) and assume that the target concept is chosen according to v. Let
BPM be a learning algorithm such that after seeing a batch of labeled instances S
returns the center of gravity of v restricted to the version space as a hypothesis
hbpm' Let hopt(') be the Bayes optimal classifier. For any x € IR"™ and any
sample S

Pr [hppm(@) # c(2)|S] < (e = 1) Pr [hopt () # c(2) |S]

Theorem 1 proves that the generalization error of hppp is at most (e—1) ~ 1.7
times larger than the best possible. Note that this bound is dimension free. There
is no assumption on the size of the training sample S or the way it was collected.
However, the size of S, the dimension and maybe other properties influence the
error of hopt and thus affect the performance of BPM.

Proof. If v is log-concave, then any restriction of v to a convex set is log-concave
as well. Since the version space is convex, the posterior induced by S is log-
concave. Let € IR™ be an instance for which the prediction is unknown. Let H
be the set of linear classifiers which predict that the label of x is 41, therefore

H={0:0-2>0}

and hence H is a half-space. Algorithm hopt will predict that the label of x
is +1iff v (H|S) > 1/2. W.l.o.g. assume that v(H|S) > 1/2. We consider two
cases.

First assume that v(H|S) > 1 — 1/e. From theorem 6 and the definition of
the depth function (1) it follows that any half space with measure > 1 — 1/e
must contain the center of gravity. Hence the prediction made by hbpm is the
same as the prediction made by hopt.-

The second case is when 1/2 < v (H|S) < 1—1/e. If BPM predicts that the
label is +1, then it suffers from the same error as hopt. If hbpm predicts that
the label of x is —1 then:

Pre [hopt (z) # c()|5] TI1-v(HS) = 1/e

Pre [bopn(@) # @) 1S]  yqmjs) _1-1/e

Note that if v (H|S) < 1/2 the prediction of hopt will be that the label of z
is —1 and we can apply the same proof to

H={0:0-2<0}

2.2 Computational Complexity

Theorem 1 provides a justification for the choice of the center of gravity in the
Bayes Point Machine [1]. Herbrich et al. [1] suggested algorithms for approx-

2 See appendix A for discussion and definitions of concave measures. Note however,
that the uniform distribution over the version space is always log-concave.



Fig. 1. Although the white point is close (distance wise) to the Tukey Median (in
black), it does not have large depth, as demonstrated by the dotted line.

imating the center of gravity. In order for our bounds to follow for the approx-
imation, it is necessary to have some lower bound on the Tukey Depth of the
approximating point. For this purpose, Euclidean proximity is not good enough
(see figure 1). Bertsimas and Vempala [10] have suggested a solution for this
problem. The algorithm they suggest requires O*(n*) operations where n is the
input dimension. However it is impractical due to large constants. Nevertheless,
the research in this field is active and faster solutions may emerge.

2.3 Mistake Bound

The On-line Mistake-Bound model is another common framework in statistical
learning. In this setting the learning is an iterative process, such that at iteration
i, the student receives an instance x; and has to predict the label y;. After
making this prediction, the correct label is revealed. The goal of the student is
to minimize the number of wrong predictions in the process.

The following theorem proves that when learning linear classifiers in the on-
line model, if the student makes its predictions using the center of gravity of
the current version space, then the number of predictions mistakes is at most
m log ¥ where R is a radius of a ball containing all the instances and
r is a margin term. Note that the algorithm of the perceptron has a bound of
R?/r? in the same setting [6]. Hence the new bound is better when the dimension
n is finite (i.e. small).

Theorem 2. Let {(z;,y;)};=, C R"x{—1,1} be a sequence such that ||z;|, < R
and there exists r > 0 and a unit vector 0 € R" such that y;x; -0 > r for any i.
Let BPM be an algorithm that predicts the label of the next instance x,,41 to be
the label assigned by the center of gravity of the intersection of the version space
induced by {(z;,v:)}.~, and the unit ball. The number of prediction mistakes that
BPM makes is at most w log ¥

Proof. Recall that the version space is the set of all linear classifiers (inside the
unit ball) which correctly classifies all instances seen so far. The proof track is
as follows: first we will show that the volume of the version space is bounded
from below. Second, we will show that whenever a mistake occurs, the volume
of the version space reduces by a constant factor. Combining these two together,
we conclude that the number of mistakes is bounded.

Let 6 be a unit vector such that y;x;-0 > r. Note that if |¢’ — 6||, < r/R then
y;x; - 0" > 0. Therefore, there exists a ball of radius r/2R inside the unit ball of



IR" such that all " in this ball correctly classify all z;’s. Hence, the volume of the
version space is at least (r/2R)"V;, where V,, is the volume of the n-dimensional
unit ball.

Assume that BPM made a mistake while predicting the label of z;. W.l.o.g.
assume that BPM predicted that the label is +1. Let H = {6 : 6 - z; > 0}, since
the center of gravity is in H, and the Tukey Depth of the center of gravity > 1/e,
the volume of H is at least 1/e of the volume of the version space. This is true
since the version space is convex and the uniform measure over convex bodies is
log-concave.

Therefore, whenever BPM makes a wrong prediction, the volume of the ver-
sion space reduces by a factor of (1 — 1/e) at least. Assume that BPM made k
wrong predictions while processing the sequence {(z;,v;)}.~, then we have that

the volume of the version space is at most V;, (1 — %)k and at least V;,(5%)" and

thus we conclude that
n 2R
k< ——F—=<log—

—log (1 — g) r

3 The Bayes Depth

As we saw in the previous section the Tukey Depth plays a key role in bounding
the error of Bayes Point Machine when learning linear classifiers. We would
like to extend these results beyond linear classifiers; thus we need to extend the
notion of depth. Recall that the Tukey Depth (1) measures the centrality of a
point with respect to a probability measure. We say that a point x € IR" has
depth D = D(z) if when standing at = and looking in any direction, the points
you will see have a probability measure of D at least. The question is thus how
can we extend this definition to other classes? How should we deal with multi-
class partitions of the data, relative to the binary partitions in the linear case?
For this purpose we define Bayes Depth:

Definition 2. Let C be a concept class such that c € C is a function ¢ : X — ).
Letl:Y xY — IR be a loss function, and let v be a probability measure over C.
The Bayes Depth of a hypothesis h is

mingey Fey [ (y, ¢ (x
Dpayes () = inf ijj}[l 0 (:1:[) fi (x())]))] @

The denominator in (4) is the expected loss of h when predicting the class of
x, while the numerator is the minimal possible expected loss, i.e. the loss of the
Bayes classifier. Note that the hypothesis & need not be a member of the concept
class C. Furthermore, it need not be a deterministic function; if A is stochastic
then the loss of i should be averaged over its internal randomness.

An alternative definition of depth is provided implicitly in definition 1. Recall
that Herbrich et al. [1] defined the Bayes Point h as the point which minimizes
the term

Ey [Ecny [L(h(z), c(2))]] (5)



when [ is some loss function. Indeed the concept which minimizes the term in (5)
is the concept with minimal average loss, and thus this is a good candidate for
a depth function. However, evaluating this term requires full knowledge of the
distribution of the sample points. This is usually unknown and in some cases it
does not exist since the sample point might be chosen by an adversary.

3.1 Examples

Before going any further we would like to look at a few examples which demon-
strate the definition of Bayes Depth.

Ezample 1. Bayesian prediction rule

Let h be the Bayesian prediction rule, i.e. h(z) = mingey Eony [ (y, ¢ (2))].
It follows from the definition of depth that Dpyges (h) = 1. Note that any
prediction rule cannot have a depth greater than 1.

Ezample 2. MAP on finite concept classes
Let C be a finite concept class of binary classifiers and let [ be the zero-one
loss function. Let h = arg max.cc v(C), i.e. h is the Maximum A-Posteriori. Since

C is finite we obtain v(h) > 1/|C|. Simple algebra yields D,y (h) > |C‘171.

Example 3. Center of Gravity

In this example we go back to linear classifiers. The sample space consists of
tuples (z,b) such that z € IR™ and b € IR. A classifier is a vector w € IR" such
that the label w assigns to (x, b) is sign(w-x +b). The loss is the zero-one loss as
before. Unlike the standard setting of linear classifiers the offset b is part of the
sample space and not part of the classifier. This setting has already been used
in [11]. In this case the Bayes Depth is a normalized version of the Tukey Depth:

D (w
DBayes (w) = #%)w)

Example 4. Gibbs Sampling

Our last example uses the Gibbs prediction rule which is a stochastic rule.
This rule selects at random ¢ € C according to v and uses it to predict the
label of x. Note that Haussler et al. [12] already analyzed this special case
using different notation. Let h be the Gibbs stochastic prediction rule such
that Pr[h(z) =y] = v{c: ¢(x) = y}. Let | be the zero-one loss function As-
sume that Y = {—1,4+1}, and denote by p = v{c : ¢(x) = +1}. We obtain

: min(p,1—
DBayes (h) > inf e 0,1 ﬁ = 0.5.

3.2 Generalization Bounds

Theorems 1 and 2 are special cases of a general principle. In this section we show
that a “deep” classifier, i.e. a classifier with large Bayes Depth, generalizes well.
We will see that both the generalization error, in the batch framework, and the
mistake bound, in the online framework, can be bounded in terms of the Bayes
Depth.



Theorem 3. Let C be a parameter space and let v be a probability measure
(prior or posterior) over C and [ be a loss function. Let h be a classifier then for
any probability measure over X

E.nEL [l (R (x),c(x))] < WECNUEZ [l (hopt (),c (35))} (6)

where hopt(-) is the optimal predictor, i.e. the Bayes prediction rule.

The generalization bound presented in (6) differs from the common PAC
bounds (e.g. [13,14, ...]). The common bounds provide a bound on the general-
ization error based on the empirical error. (6) gives a multiplicative bound on
the ratio between the generalization error and the best possible generalization
error. A similar approach was used by Haussler et al. [12]. They proved that the
generalization error of the Gibbs sampler is at most twice as large as the best
possible.

Proof. Let x € X and let D = DBayes (h) be the depth of h. Thus ,

mingey Eowy [ (y, ¢ (x))]
P 1@, ¢ (@)

Therefore,
1
B [L(h(2), ¢ ()] < 5 min Eoy [y, ¢ (2))]
1 /
= = Bomy [z (hopt (z),c (x))} (7)
Averaging (7) over x we obtain the stated result. O

We now turn to prove the extended version of theorem 2, which deals with
the online setting. This analysis resembles the analysis of the Halving algorithm
[15]. However, the algorithm presented avoids the computational deficiencies of
the Halving algorithm.

Theorem 4. Let {(x;,yi)};o, be a sequence of labeled instances where z; €
X and y; € {£1}. Assume that there exists a probability measure v over a
concept class C such that v{c € C : Vi c(x;) = y;} > v > 0. Let L be a learning
algorithm such that given a training set S = {(z;,y;)}.-,, L returns a hypothesis
h which is consistent with S and such that D Bayes (h) > Do > 0 (with respect
to the measure v restricted to the version-space and the zero-one loss). Then the
algorithm which predicts the label of a new instance using the hypothesis returned
by L on the data seen so far will make at most

log1/y
log (14 Do)

mistakes.



Proof. Assume that the algorithm presented made a mistake in predicting the
label of x,,. Denote by V,,,—; the version space at this stage; then

Vine1 ={ceC :V1<i<m, c(z;) =y;}

from the definition of the version space and the assumptions of this theorem we
have that v(V,,,—1) > . We will consider two cases. One is when the majority
of the classifiers are misclassifies z,,,, and the second is when only the minority
misclassifies. If the majority made a mistake then v(V;,) < 2v(Vi,_1).

However if the minority made a mistake, the hypothesis h returned by L is
in the minority, but since Dpayeg (h) > Do we obtain

vi{ice Vi1 : c(tm) = —ym}
v{c€Vm-1: c(xm)=ym}

Dy >

(8)

Note that the denominator in (8) is merely v(V,) while the numerator is
v(Vin—1) — v(Viy). Thus

Dy < = -1

If there were k& wrong predictions on the labels of z1,...,x,, then

k
1 1
< -
V(Vm)_max<2,1 0>

and thus v(Vi) < 1557 (Vin—1)-

while v < v(V,;,) and thus, since Dy is upper bounded by 1, we conclude

k< 1og'1y
10gm

4 Concentration of Measure for Multivariate Random
Variables to the Tukey Median

In previous sections we have seen the significance of the Tukey Depth [2] in prov-
ing generalization bounds. Inspired by this definition we also used the extended
Bayes Depth to prove generalization bounds on general concept classes and loss
functions. However, the Tukey Depth has many other interesting properties. For
example, Donoho and Gasko [7] defined the Tukey Median as the point which
achieves the best Tukey Depth. They showed that such a point always exists, but
it need not be unique. The Tukey Median has high breakdown point [7] which
means that it is resistant to outliers, much like the univariate median.

In this section we use Tukey Depth to provide a novel concentration of meas-
ure inequality for multivariate random variables. The theorem states that any



Lipschitz® function from a product space to IR™ is concentrated around its Tukey
Median.

Theorem 5. Let (21,...,(2; be measurable spaces and let X = 1 x ... X {24
be the product space with P being a product measure. Let ' : X — IR" be a
multivariate random variable such that F is a Lipschitz function in the sense
that for any x € X there exists a = a(x) € ]Ri with ||a||2 = 1 such that for every
yeXx

IF(@) = FW)ls < Y a (9)

i XTiFEYi
Assume furthermore that F is bounded such that |F(z) — F(y)|| < M.
Let z € R"™ then for anyr >0

AMN\" 1 2
Px F o > < il - _-r?/16 1
e - 12 < (5F) 5 (10)
where D(z) is the Tukey Depth of z with respect to the push forward measure
induced by F'.

Proof. Let w € IR™ be in the unit ball. From (9), it follows that if a = a(z) then
for any y € R"

F(x)-w—Fy)-w=(F(z) = F(y)) - w < [|Fz) = F@)| |lw] < Y a

i X FYi

which means that the functional © — F(z) - w is Lipschitz. Let z € IR™ then
Pryp[F(z) - w < z-w] > D(z). Using Talagrand’s theorem [16] we conclude
that )
L —r?/16
mEI}J[F(z) cw>zow4r/2] < D(Z)e
clearly this will hold for any vector w such that ||w|| < 1.

Let W be a minimal r/2M covering of the unit sphere in IR", i.e. for any unit
vector u there exists w € W such that |ju — w|| < r/2M. W.Lo.g. W is a subset
of the unit ball, otherwise project all the points in W onto the unit ball. Since
W is minimal then |W| < (4M/r)". Using the union bound over all w € W it
follows that

AMN\" 1 2
zlirp[ﬂwGVV, F(m)-w22~w+r/2]§(7) D(Z)e*’”/16

Finally we claim that if x is such that |[F(xz) — z|| > r then there exists
w € W such that F(x)-w > z-w + r/2. For this purpose we assume that
z € conv(F (X)) otherwise the statement is trivial since D(z) = 0. Let

F(z) -z

CTR@ =

3 Lipschitz is in Talagrand’s sense. See e.g [9, pg 72-79].



then v is a unit vector and
Flz) u—z-u=(F(z)—z)-u=||F(z)—z|]| >r

Since w is a cover of the unit sphere and w is a unit vector, there exist w € W
such that ||w — ul| < r/2M.
Fla) w—z-w=(F(z)—2) w
= (F(z) —z) - u+ (F(z) —2) - (w—u)
21 —||F(z) — 2|l [lw — ul
>r—(M)(r/2M)
=r/2
and thus F(z)-w > z - w + r/2. Hence,

Prl|F(z) 2 > ] < Pr[3w e W, F(z)-w>z-w+r/2)

AMN\" 1 2
< - —r“/16
—<r) D(z)°

Corollary 1. In the setting of theorem 5, if mp is the Tukey Median of F, i.e.
the Tukey Median of the push-forward measure induced by F then for any r > 0

O

amﬂm—mﬂzﬂﬁ(%q (n+1)e /18

Proof. From Helly’s theorem [3] it follows that D (mp) > 1/(n+1) for any
measure on IR". Substitute this in (10) to obtain the stated result. O

Note also that any Lipschitz function is bounded since

IF(2) = Fy)l < Y ai<Vd

hence M in the above results is bounded by v/d.

5 Summary and discussion

In this paper we present new generalization bounds for Bayes Point Machines
[1]. These bounds apply the mean voter theorem [4] to show that the generaliz-
ation error of Bayes Point Machines is greater than the minimal possible error
by at most a factor of (e — 1) ~ 1.71. We also provide a new on-line mistake
bound of ———=log (2R/r) ~ 2.18nIn (2R/r) for this algorithm.

The notion of Bayes Point is extended beyond linear classifiers to a general
concept class. We defined the Bayes Depth in the general supervised learning
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Fig. 2. A comparison of the Tukey Median (in black) and the maximal margin point
(in white). In this case, the maximal margin point has small Tukey Depth

context, as an extension of the familiar Tukey Depth. We give examples for calcu-
lating the Bayes Depth and provide a generalization bound which is applicable
to this more general setting. Our bounds hold for multi-class problems and for
any loss function.

Finally we provide a concentration of measure inequality for multivariate
random variables to their Tukey Median. This inequality suggests that the cen-
ter of gravity is indeed a good approximation to the Bayes Point. This provides
additional evidence for the fitness of the Tukey Median as the multivariate gen-
eralization of the scalar median (see also [17] for a discussion on this issue).

The nature of the generalization bounds presented in this paper is different
from the more standard bounds in machine learning. Here we bound the multi-
plicative difference between the learned classifier and the optimal Bayes classifier.
This multiplicative factor is a measure of the efficiency of the learning algorithm
to exploit the available information. On the other hand, the more standard PAC-
like bounds [13,14, ...], provide an additive bound, on the difference between the
training error and the generalization error, with high confidence. The advantage
of additive bounds is in their performance guaranty. Nevertheless, empirically it
is known that PAC bounds are very loose due to their worst case distributional
assumptions. The multiplicative bounds are tighter than the additive ones in
these cases.

The bounds for linear Bayes Point Machines and the use of Tukey Depth
can provide another explanation for the success of Support Vector Machines [5].
Although the depth of the maximal margin classifier can be arbitrarily small
(see figure 2), if the version space is “round” the maximal margin point is close
to the Tukey Median. We argue that in many cases this is indeed the case.

There seems to be a deep relationship between Tukey Depth and Active
Learning, especially through the Query By Committee (QBC) algorithm [11].
The concept of information gain, as used by Freund et al. [11] to analyze the
QBC algorithm, is very similar to Tukey Depth. This and other extensions are
left for further research.
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A Concave Measures

We provide a brief introduction to concave measures. See [8,4,18,19] for more
information about log-concavity and log-concave measures.



Definition 3. A probability measure v over R™ is said to be log-concave if for
any measurable sets A and B and every 0 < A < 1 the following holds:

V(M4 (1= B)>v(4) v (B

Note that many common probability measures are log-concave, for example
uniform measures over compact convex sets, normal distributions, chi-square
and more. Moreover the restriction of any log-concave measure to a convex set
is a log-concave measure.

In some cases, there is a need to quantify concavity. The following definition
provides such a quantifier.

Definition 4. A probability measure v over IR" is said to be p-concave if for
any measurable sets A and B and every 0 < \ < 1 the following holds:

v(AM + (1= N B) > [\ (A)” + (1= \v (B)]*
A few facts about p-concave measures:

— If v is p-concave with p = oo then v(AA + (1 — A\)B) > ma (1/( ),v(B)).

— If v is p-concave with p = —oco then v(AA + (1 — A)B) > min(v(A4 ) v(B)).

— If v is p-concave with p = 0 then v(AA + (1 — \)B) > v(A)*v(B)!~?, in this
case v is called log-concave.

B Mean Voter Theorem

Caplin and Nalebuff [4] proved the Mean Voter Theorem in the context of the
voting problem. They did not phrase their theorem using Tukey Depth but the
translation is trivial. Hence, we provide here (without proof) a rephrased version
of their theorem.

Theorem 6. (Caplin and Nalebuff) Let v be a p-concave measure over IR™ with
p>—=1/(n+1). Let z be the center of gravity of v, i.e. z = E ., [x]. Then

n n+1l/p
262 (F57) o

where D(-) is the Tukey Depth.

First note that when p — 0 the bound in (11) approches 1/e; hence for log-
concave measures D(z) > 1/e. However, this bound is better than 1/e in many
cases, i.e. when p > 0. This fact can be used to obtain an improved version of
theorems 1 and 2.



