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Abstract

The so-called “experts algorithms” constitute a methodology for choos-
ing actions repeatedly, when the rewards depend both on the choice of
action and on the unknown current state of the environment. An experts
algorithm has access to a set of strategies (“experts”), each of which may
recommend which action to choose. The algorithm learns how to com-
bine the recommendations of individual experts so that, in the long run,
for any fixed sequence of states of the environment, it does as well as the
best expert would have done relative to the same sequence. This method-
ology may not be suitable for situations where the evolution of states of
the environment depends on past chosen actions, as is usually the case,
for example, in a repeated non-zero-sum game.
A new experts algorithm is presented and analyzed in the context of re-
peated games. It is shown that asymptotically, under certain conditions,
it performs as well as the best available expert. This algorithm is quite
different from previously proposed experts algorithms. It represents a
shift from the paradigms of regret minimization and myopic optimiza-
tion to consideration of the long-term effect of a player’s actions on the
opponent’s actions or the environment. The importance of this shift is
demonstrated by the fact that this algorithm is capable of inducing co-
operation in the repeated Prisoner’s Dilemma game, whereas previous
experts algorithms converge to the suboptimal non-cooperative play.

1 Introduction

Experts algorithms. A well-known class of methods in machine learning are the so-
calledexperts algorithms. The goal of these methods is to learn from experience how to
combine advice from multiple experts in order to make sequential decisions in an online
environment. The general idea can be described as follows. An agent has to choose repeat-
edly from a given set of actions. The reward in each stage is a function of the chosen action
and the choices of Nature or the environment (also referred to as the “adversary” or the “op-
ponent”). A set of strategies{1, . . . , r} is available for the agent to choose from. We refer
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to each such strategy as an “expert,” even though some of them might be simple enough to
be called a “novice.” Each expert suggests a choice of an action based on the history of
the process and the expert’s own choice algorithm. After each stage, the agent observes his
own reward. An experts algorithm directs the agent with regard to which expert to follow
in the next stage, based on the past history of actions and rewards.

Minimum Regret. A popular criterion in decision processes is called Minimum Regret
(MR). Regret is defined as the difference between the reward that could have been achieved,
given the choices of Nature, and what was actually achieved. An expert selection rule is said
to minimize regret if it yields an average reward as large as that of any single expert, against
any fixed sequence of actions chosen by the opponent. Indeed, certain experts algorithms,
which at each stage choose an expert from a probability distribution that is related to the
reward accumulated by the expert prior to that stage, have been shown to minimize regret
[1, 2]. It is crucial to note though that, since the experts are compared on a sequence-by-
sequence basis, the MR criterion ignores the possibility that different experts may induce
different sequences of choices by the opponent. Thus, MR makes sense only under the
assumption that Nature’s choices are independent of the decision maker’s choices.

Repeated games. We consider a multi-agent interaction in the form of a repeated game.
In repeated games, the assumption that the opponent’s choices are independent of the
agent’s choices is not justified, because the opponent is likely to base his choices of ac-
tions on the past history of the game. This is evident in nonzero-sum games, where players
are faced with issues such as how to coordinate actions, establish trust or induce coopera-
tion. These goals require that they take each other’s past actions into account when making
decisions. But even in the case of zero-sum games, the possibility that an opponent has
bounded rationality may lead a player to look for patterns to be exploited in the opponent’s
past actions.

We illustrate some of aforementioned issues with an example involving the Prisoner’s
Dilemma game.

The Prisoner’s Dilemma. In the single-stage Prisoner’s Dilemma (PD) game, each
player can either cooperate (C) or defect (D). Defecting is better than cooperating regard-
less of what the opponent does, but it is better for both players if both cooperate than if both
defect. Consider the repeated PD. Suppose the row player consults with a set of experts,
including the “defecting expert,” who recommends defection all the time. Let the strategy
of the column player in the repeated game be fixed. In particular, the column player may be
very patient and cooperative, willing to wait for the row player to become cooperative, but
eventually becoming non-cooperative if the row player does not seem to cooperate. Since
defection is a dominant strategy in the stage game, the defecting expert achieves in each
step a reward as high as any other expert against any sequence of choices of the column
player, so the row player learns with the experts algorithm to defect all the time. Obviously,
in retrospect, this seems to minimize regret, since for any fixed sequence of actions by the
column player, constant defection is the best response. Obviously, constant defection is
not the best response in the repeated game against many possible strategies of the column
player. For instance, the row player would regret very much using the experts algorithm if
he were told later that the column player had been playing a strategy such as Tit-for-Tat.1

In this paper, we propose and analyze a new experts algorithm, which follows experts judi-
ciously, attempting to maximize the long-term average reward. Our algorithm differs from
previous approaches in at least two ways. First, each time an expert is selected, it is fol-
lowed for multiple stages of the game rather than a single one. Second, our algorithm takes

1The Tit-for-Tat strategy is to play C in the first stage, and later play in every stage whatever the
opponent played in the preceding stage.



into account only the rewards that were actually achieved by an expert in the stages it was
followed, rather than the reward that could have been obtained in any stage. Our algorithm
enjoys the appealing simplicity of the previous algorithms, yet it leads to a qualitatively
different behavior and improved average reward. We present two results:

1. A “worst-case” guarantee that, in any play of the game, our algorithm achieves an
average reward that is asymptotically as large as that of the expert that did best
in the rounds of the game when it was played. The worst-case guarantee holds
without any assumptions on the opponent’s or experts’ strategies.

2. Under certain conditions, our algorithm achieves an average reward that is asymp-
totically as large as the average reward that could have been achieved by the best
expert, had it been followed exclusively. The conditions are required in order to
facilitate learning and for the notion of a “best expert” to be well-defined.

The effectiveness of the algorithm is demonstrated by its performance in the repeated PD
game, namely, it is capable of identifying the opponent’s willingness to cooperate and it
induces cooperative behavior.

The paper is organized as follows. The algorithm is described in section 2. A bound
based on actual expert performance is presented in section 3. In section 4, we introduce
and discuss an assumption about the opponent. This assumption gives rise to asymptotic
optimality, which is presented in section 5.

2 The algorithm

We consider an “experts strategy” for the row player in a repeated two-person game in
normal form. At each stage of the game, the row and column player choose actionsi ∈ I
andj ∈ J , respectively. The row player has a reward matrixR, with entries0 ≤ Rij ≤ u.
The row player may consult at each stage with a set of experts{1, . . . , r}, before choosing
an action for the next stage. We denote byσe the strategy proposed by experte, i.e.,
σe = σe(hs) is the proposed probability distribution over actions in stages, given the
historyhs. We refer to the row player as the agent and to the column player as the opponent.

Usually, the form of experts algorithms found in the literature is as follows. Denote by
Me(s − 1) the average reward achieved by experte prior to stages of the game2. Then,
a reasonable rule is to follow experte in stages with a probability that is proportional to
some monotone function ofMe(s− 1). In particular, when this probability is proportional
to exp{ηsMe(s−1)}, for a certain choice ofηs, this algorithm is known to minimize regret
[1, 2]. Specifically, by lettingjs (s = 1, 2, . . .) denote the observed actions of the opponent
up to stages, and lettingσX denote the strategy induced by the experts algorithm, we have

s∑

s′=1

E[R(i, js) : i ∼ σX(hs)] ≥ sup
e

1
s

s∑

s′=1

E[R(i, js) : i ∼ σe(hs)]− o(s). (1)

The main deficiency of the regret minimization approach is that it fails to consider the in-
fluence of chosen actions of a player on the future choices of the opponent — the inequality
(1) holds for anyfixedsequence(js) of the opponent’s moves, but does not account for the
fact that different choices of actions by the agent may induce different sequences of the op-
ponent. This subtlety is also missing in the experts algorithm we described above. At each

2In different variants of the algorithm and depending on what information is available to the row
player,Me(s − 1) could be either an estimate of the average reward based on reward achieved by
experte in the stages it was played, or the reward it could have obtained, had it been played in all
stages against the same history of play of the opponent.



stage of the game, the selection of expert is based solely on how well various experts have,
or could have, done so far. There is no notion of learning how an expert’s actions affect
the opponent’s moves. For instance, in the repeated PD game described in the introduction,
assuming that the opponent is playing Tit-for-Tat, the algorithm is unable to establish the
connection between the opponent’s cooperative moves and his own.

Based on the previous observations, we propose a new experts algorithm, which takes into
account how the opponent reacts to each of the experts. The idea is simple: instead of
choosing a (potentially different) expert at each stage of the game, the number of stages an
expert is followed, each time it is selected, increases gradually. We refer to each such set of
stages as an “iteration” of the algorithm. Following is the statement of theStrategic Experts
Algorithm (SEA). The iteration number is denoted byi. The number of iterations during
which experte has been followed is denoted byNe. The average payoff from iterations in
which experte has been followed is denoted byMe.

Strategic Experts Algorithm (SEA):

1. Fore = 1, . . . , r, setMe = Ne = 0. Seti = 1.

2. With probability1/i perform anexploration iteration, namely, choose an experte
from the uniform distribution over{1, . . . , r}; otherwise, perform anexploitation
iteration, namely, choose an experte from the uniform distribution over the set of
expertse′ with maximumMe′ .

3. SetNe = Ne + 1. Follow experte’s instructions for the nextNe stages. Denote
by R̃ the average payoff accumulated during the current iteration (i.e., theseNe

stages), and set

Me = Me + 2
Ne+1 (R̃−Me) .

4. Seti = i + 1 and go to step 2.

Throughout the paper,s will denote a stage number, andi will denote an iteration number.
We denote byM1(i), . . . , Mr(i) the values of the registersM1, . . . ,Mr, respectively, at
the end of iterationi. Similarly, we denote byN1(i), . . . , Nr(i) the values of the registers
N1, . . . , Nr, respectively, at the end of iterationi. Thus,Me(i) andNe(i) are, respectively,
the average payoff accumulated by experte and the total number of iterations this expert
was followed on or before iterationi. We will also letM(s) andM(i) denote, without
confusion, the average payoff accumulated by the algorithm in the firsts stages or firsti
iterations of the game.

3 A bound based on actual expert performance

When the SEA is employed, the average rewardMe(i) that was actually achieved by each
available experte is being tracked. It is therefore interesting to compare the average reward
M(s) achieved by the SEA, with the averages achieved by the various experts. The follow-
ing theorem states that, in the long run, the SEA obtains almost surely at least as much as
the actual average reward obtained by any available expert during the same play.

Theorem 3.1.
Pr

(
lim inf
s→∞

M(s) ≥ max
e

lim inf
i→∞

Me(i)
)

= 1 . (2)

Although the claim of Theorem 3.1 seems very close to regret minimization, there is an es-
sential difference in that we compare the average reward of our algorithm with the average
rewardactually achievedby each expert in the stages when it was played, as opposed to
the estimated average reward based on the whole history of play of the opponent.



Note that the bound (2) is merely a statement about the average reward of the SEA in
comparison to the average reward achieved by each expert, but nothing is claimed about
the limits themselves. Theorem 5.1 proposes an application of this bound in a case when
an additional assumption about the experts’ and opponent’s strategies allows us to analyze
convergence of the average reward for each expert. Another interesting case occurs when
one of the experts plays a maximin strategy; in this case, bound (2) ensures that the SEA
achieves at least the maximin value of the game. The same holds if one of the experts is a
regret-minimizing experts algorithm, which is known to achieve at least the maximin value
of the game.

The proof of Theorem 3.1 is based on several lemmas. The first lemma is a basic fact about
the vanishing frequency of exploration iterations.

For every iterationi, let Zi be a random variable such thatZi = 1 if iteration i is an
exploration iteration; otherwise,Zi = 0. Also, letc > 0 be any constant and lete be any
expert. Define random variable iteration numbersIk (k = 1, 2, . . .) by

Ik = min{i | Ne(i) = k}
(wheremin ∅ = ∞).
Lemma 3.1. With probability one,

lim
k→∞

sup
n

{
1
n

Ik+n∑

i=Ik+1

Zi : n ≥ cNe(Ik)

}
= 0 .

Proof: Let k be fixed. We first show that the random variablesZIk+1, ZIk+2, . . . are
conditionally independent givenIk; furthermore, for everyn ≥ 1,

Pr(ZIk+n | Ik = j) =
1

j + n
.

For any iterationj, denoteN j
e = (Ne(1), . . . , Ne(j)) and denote byWj the set of all the

possible sequences of values ofN j
e , which may occur during in the play, so thatIk = j.

Explicitly,

Wj = Wj(k) = {(w1, . . . , wj) | wj−1 = k − 1, wj = k, wi−1 ≤ wi, i = 2, . . . , j} .

Note that ifN j
e = w ∈ Wj(k), thenIk = j. Let n ≥ 1 and letai ∈ {0, 1}n, i = 1, . . . , n,

be any numbers. For anyj,

Pr(Zi = ai, i = j + 1, . . . , j + n | Ik = j)

=
∑

w∈Wj

Pr(Zi = ai, i = j + 1, . . . , j + n | Ik = j, N j
e = w) · Pr(N j

e = w | Ik = j)

=
∑

w∈Wj

Pr(Zi = ai, i = j + 1, . . . , j + n | N j
e = w) · Pr(N j

e = w | Ik = j) .

Since the decision whether or not to perform an exploration iteration is independent of the
number of times any expert has been previously followed, it follows that

Pr(Zi = ai, i = j + 1, . . . , j + n | N j
e = w) = Pr(Zi = ai, i = j + 1, . . . , j + n) .

Thus,
Pr(Zi = ai, i = j + 1, . . . , j + n | Ik = j)

=
j+n∏

i=j+1

Pr(Zi = ai) ·
∑

w∈Wj

Pr(N j
e = w | Ik = j)

=
j+n∏

i=j+1

Pr(Zi = ai)



We haveIk ≥ Ne(Ik) = k, and therefore

zk,n ≡ 1
n E

Ik+n∑

i=Ik+1

Zi ≤ 1
k

.

Let ε be any positive number. Using Hoeffding’s inequality , we have for allk ≥ 2
ε

Pr

(
1
n

Ik+n∑

i=Ik+1

Zi ≥ ε|Ik

)
= Pr

(
1
n

Ik+n∑

i=Ik+1

Zi − zk,n ≥ ε− zk,n|Ik

)

≤ exp
{−2n(ε− 1/k)2

}

≤ exp
{−nε2/2

}
.

We conclude that

Pr

(
1
n

Ik+n∑

i=Ik+1

Zi ≥ ε

)
≤ exp

{− 1
2n ε2

}
.

It follows that

Pr

(
sup

n≥cne(Ik)

1
n

Ik+n∑

i=Ik+1

Zi > ε

)
= Pr

(
sup
n≥ck

1
n

Ik+n∑

i=Ik+1

Zi > ε

)

≤
∞∑

n=ck

exp
{− 1

2nε2
}

≤ 2ε−2 exp
{− 1

2 (ck − 1) ε2
}

.

Finally,

∞∑

k=d 2
ε e

Pr

(
sup

n≥cne(Ik)

1
n

k+n∑

i=k+1

Zi > ε

)
≤

∞∑

k=d 2
ε e

2ε−2 exp
{− 1

2 (ck − 1) ε2
}

< ∞ ,

so by the Borel-Cantelli lemma, with probability one, for only finitely many value ofk,

sup

{
1
n

Ik+n∑

i=Ik+1

Zi : n ≥ cne(Ik)

}
> ε .

The lemma follows since the latter holds for everyε > 0. 2

Lemma 3.2. For everyε > 0, any experte and any two iterationsi < i′, if

Me(i′) ≤ Me(i)− ε ,

then

Ne(i′)−Ne(i) ≥ Ne(i)ε
3R̄

.

Proof: Fix ε > 0, e andi < i′. For simplicity, denoteN = Ne(i), andv = Me(i). Let
I0 = i, and forj = 1, . . . , k, let Ij , denote thejth iteration such that experte is played
after iterationi and on or before iterationi′. Then we haveNe(Ij) = N + j.
Since all payoffs of the game are nonnegative, we have

Me(Ij) ≥ Me(Ij−1)
(N + j − 1)(N + j)
(N + j)(N + j + 1)

.



A simple induction argument yields

Me(Ik) ≥ v
N(N + 1)

(N + k)(N + k + 1)
. (3)

By hypothesis, we also have
v − ε ≥ Me(Ik) . (4)

Combining (3) and (4) and rearranging terms, we get thatk must satisfy

k2 + k (2N + 1)− ε

v − ε
N(N + 1) ≥ 0 . (5)

Denotingk̄ = εN/3u,

k̄2 + k̄(2N + 1) − ε

v − ε
N(N + 1) ≤(a) k̄2 + k̄(N + 1)− ε

u
N(N + 1)

=
( ε

u

)2 N2

9
+

ε

u
· N(2N + 1)

3
− ε

u
N(N + 1)

≤(b) ε

u
·N

(
N

9
+

2N + 1
3

− (N + 1)
)

< 0 .

Inequality(a) follows fromv ≤ u, and inequality(b) follows fromε ≤ u, which must hold
since all payoffs are between0 andu . We conclude thatk ≥ k̄, and the lemma follows.2

The next lemma is the center piece in the proof of Theorem 3.1. Loosely speaking, after
the game has been played long enough, if an experte has average payoff significantly less
than

max
e′

lim inf
i→∞

Me′(i) ,

thene must have been played during only a small fraction of the iterations. For a logical
propositionφ, let δ[φ] = 1 if φ is true; otherwiseδ[φ] = 0.

Lemma 3.3. Let ē be any expert and define a random variableV by

V = lim inf
i→∞

Mē(i) .

Then, for every experte andε > 0, with probability one,

lim
i→∞

Ne(i) · δ [Me(i) ≤ V − ε]
i

= 0 . (6)

Proof: We letZi = 1 if iteration i was an exploration iteration; otherwiseZi = 0. We use
the phrase “Almost all histories” to represent “all histories except for a set of histories with
zero probability.”
Let an experte be fixed. We distinguish three types of histories of the game according to
the asymptotic behavior ofMe(i).
Type 1: lim infi→∞Me(i) > V − ε. For all histories of type 1, inequality (6) holds
trivially.
Type 2: lim supi→∞Me(i) < V . For histories of type 2, we use the following upper
bound onNe(I):

Ne(I) ≤
I∑

i=1

{ δ [Me(i) > Mē(i)] + Zi } .

By the strong law of large numbers, with probability one,

lim
I→∞

1
I

I∑

i=1

Zi = 0 ,



and for every history, if
lim sup

i→∞
Me(i) < lim inf

i→∞
Mē(i) ,

then ∞∑

i=1

δ[Me(i) > Mē(i)] < ∞

and

lim
I→∞

1
I

I∑

i=1

δ[ Me(i) > Mē(i)] = 0 .

We conclude that inequality (6) holds for almost all histories of type 2.
Type 3: lim infi→∞Me(i) ≤ V − ε andlim supi→∞Me(i) ≥ V . Let τ be any constant,
0 < τ < ε. We denoteI0 = 0 and define the following random variables fork = 1, 2, . . .:

Ik = min
{
i > Ik−1 : Me(i) ≤ V − ε + τ

2

}

I−k = max
{
i < Ik : Me(i) ≥ V − ε

2

}
.

Note thatI−k = I−k′ may hold fork 6= k′. Note also that, for all histories of type 3,Ik is
finite for all k, andI−k tends to infinity ask tends to infinity. Since

Me(Ik) ≤ V − ε + τ
2 ≤ Me(I−k )− ε−τ

2 ,

Lemma 3.2 yields the following bound onNe(Ik):

Ne(Ik) = Ne(Ik)−Ne(I−k ) + Ne(I−k )

≤
(
1 + 6u

ε−τ

)
(Ne(Ik)−Ne(I−k )) . (7)

Also,

Ne(Ik)−Ne(I−k ) ≤
Ik∑

i=I−
k

+1

{
δ[ Mē(i) ≤ V − ε

2 ] + Zi

}
. (8)

It follows from (7) and (8) that

Ne(Ik)
Ik

≤
(
1 + 6u

ε−τ

) Ne(Ik)−Ne(I−k )
Ik − I−k

≤
(
1 + 6u

ε−τ

)



∑Ik

i=I−
k

+1
δ[Mē(i) ≤ V − ε

2 ]

Ik − I−k
+

∑Ik

i=I−
k

+1
Zi

Ik − I−k




≤
(
1 + 6u

ε−τ

) ∑Ik

i=I−
k

+1
δ[Mē(i) ≤ V − ε

2 ]

Ik − I−k
(9)

+
(
1 + 6u

ε−τ

)
sup

n≥Ne(I−
k

)(ε−τ)/(6u)

∑I−
k

+n

i=I−
k

+1
Zi

n
,

where in the last inequality we have applied Lemma 3.2 to bound

Ik − I−k ≥ Ne(Ik)−Ne(I−k ) ≥ Ne(I−k ) ε−τ
6u .

The term in (9) converges to zero for almost all histories of type 3 becauseI−k tends
to infinity with k and, with probability one,δ[ Mē(i) ≤ V − ε

2 ] converges to0. Re-
call that for all histories of type 3,Ne(I−k ) tends to infinity withk. Moreover, since
Me(I−k +1) 6= Me(I−k ), it follows thatNe(I−k ) < Ne(I−k +1), so thatI−k +1, k = 1, 2, . . .



is a subsequence of the sequence of iteration numbers when experte was selected. Thus,
Lemma 3.1 can be applied to conclude that the second term in (9) converges to zero for
almost all such histories. 2

Our last lemma establishes a lower bound on the total number of stages played up to
iterationi of the game.

Lemma 3.4. For every iterationi

r∑
e=1

Ne(i)(Ne(i) + 1) ≥ i(i/r + 1).

Proof: At each iterationi, Ne(i) must satisfy
∑

e

Ne(i) = i.

Therefore,
∑r

e=1 Ne(i)(Ne(i)+1) is bounded from below by the solution of the following
quadratic minimization problem:

minx

∑
e

xe(xe + 1)

s.t.
∑

e

xe = i .

Convexity and symmetry imply that the symmetric solutionxe = i
r (for everye) is optimal.

2

Proof of Theorem 3.1: For everyε > 0 and every iterationi,

R(i) =
∑

e Ne(i)(Ne(i) + 1)Me(i)∑
e Ne(i)(Ne(i) + 1)

≥ V − ε− u ·
∑

e Ne(i)(Ne(i) + 1) δ[ Me(i) ≤ V − ε ]∑
e Ne(i)(Ne(i) + 1)

≥ V − ε− u ·
∑

e Ne(i)(Ne(i) + 1) δ[ Me(i) ≤ V − ε ]
i( i

r + 1)
, (10)

where the second inequality follows from Lemma 3.4. From Lemma 3.3, we conclude that,
with probability one, the second term in (10) converges to zero. Since this holds for anyε,

lim inf
i→∞

M(i) ≥ max
e

lim inf
i→∞

Me(i).

Finally, lets be any stage. LetIs be the largest iteration numberI such that

I∑

i=1

Nei(i) ≤ s .

Note that

s ≤
Is+1∑

i=1

Nei(i) ≤
(Is + 1)(Is + 2)

2
,



so thatIs tends to infinity withs. The average reward at stages satisfies

M(s) ≥M(Is)
1
2s

∑
e

Ne(Is)(Ne(Is) + 1)

≥ 1
2M(Is)

∑
e Ne(Is)(Ne(Is) + 1)∑

e Ne(Is)(Ne(Is) + 1)/2 + NeIs+1(Is) + 1

≥M (Is)
1

1 + 2/NeIs+1

.

The theorem follows by taking liminf on both sides ass tends to infinity. Note that for
everye, with probability one,Ne(i) tends to infinity withi. 2

4 The flexible opponent

In general, it is impossible for an experts algorithm to guarantee, against an unknown op-
ponent, a reward close to that of the best available expert. It is easy to construct examples
which prove this impossibility.

Example: Repeated Matching Pennies. In the Matching Pennies (MP) game, each of
the player and the adversary has to choose eitherH (“Heads”) orT (“Tails”). If the choices
match, the player loses1; otherwise, he wins1. A possible strategy for the adversary in the
repeated MP game is:

Adversary: Fix a positive integers and a stringσs ∈ {H, T}s. In each of the firsts
stages, play the 50:50 mixed strategy. In each of the stagess+1, s+2, . . . , if the sequence
of choices of the player during the firsts stages coincided with the stringσs, then playT ;
otherwise, play the 50:50 mixed strategy.

Suppose each available experte corresponds to a strategy of the form:

Expert: Fix a stringσe ∈ {H, T}s. During the firsts stages play according toσe. In each
of the stagess + 1, s + 2, . . . , playH.

Suppose an experte∗ with σe∗ = σs is available. Then, in order for an experts algorithm
to achieve at least the reward ofe∗, it needs to follow the stringσs precisely during the
first s stages. Of course, without knowing whatσs is, the algorithm cannot play it with
probability one, nor can it learn anything about it during the play.

In view of the repeated MP example, some assumption about the opponent must be made
in order for the player to be able to learn how to play to against that opponent. The essence
of the difficulty with the above strategy of the opponent is that it is not flexible — the
player has only one chance to guess who the best expert is and thus cannot recover from
a mistake. Here, we introduce the assumption offlexibility as a possible remedy to that
problem. Under the assumption of flexibility, the SEA achieves an average reward that is
asymptotically as high as what the best expert could be expected to achieve.

Definition 4.1 (Flexibility). (i) An opponent playing strategyπ(s) is said to beflexible
with respect to experte (e = 1, . . . , r) if there exist constantsµe, τ > 0.25 andc such that
for every stages0, every possible historyhs0 at stages0 and any number of stagess,

E
[ ∣∣∣1

s

∑s0+s
s=s0+1R(ae(s), b(s))− µe

∣∣∣ : ae(s) ∼ σe(hs), b(s) ∼ π(hs)
]
≤ c

sτ

(ii) Flexibility with respect to a set of experts is defined as flexibility with respect to every
member of the set.



In words, the expected average reward during thes stages between stages0 and stages0+s
converges (ass tends to infinity) to a limit that does not depend on the history of the play
prior to stages0.

Example 4.1 : Finite Automata. In the literature on “bounded rationality”, players are
often modelled as finite automata. Aprobabilistic automaton strategy(PAS) is specified
by a tupleA = 〈M, O, A, σ, P 〉, whereM = {1, . . . ,m} is the finite set of internal
states of the automaton,A is the set of possible actions,O is the set of possible outcomes,
σi(a) is the probability of choosing actiona while in statei (i = 1, . . . ,m) andP o =
(P o

ij) (1 ≤ i, j ≤ m) is the matrix of state transition probabilities, given an outcome
o ∈ O. Thus, at any stage of the game, the automaton picks an action from a probability
distribution associated with its current state and transitions into a new state, according to
a probability distribution which depends on the outcome of the stage game. If both the
opponent and an expert play PASs, then a Markov chain is induced over the set of pairs
of the respective internal states. If this Markov chain has a single class of recurrent states,
then the flexibility assumption holds. Note that we do not limit the size of the automata; a
larger set of internal states implies a slower convergence of the average rewards, but does
not affect the asymptotic results for the SEA.

Example 4.2 : Bounded dependence on the history.The number of possible histories at
stages grows exponentially withs. Thus, it is reasonable to assume that the choice of action
would be based not on the exact detail of the history but rather on the empirical distribution
of past actions or patterns of actions. If the opponent is believed not to be stationary,
then discounting previous observations by recency may be sensible. For instance, if the
frequency of play of actionj by the opponent is relevant, the player might condition his
choice at stages + 1 on the quantitiesτj =

∑s
s′=1 βs−s′δjjs whereβ < 1 andδ is the

Kronecker delta. In this case, only actionsjs at stagess that are relatively recent have a
significant impact onτj . Therefore strategies based onτj should exhibit behavior similar
to that of bounded recall, and lead to flexibility in the same circumstances as the latter.

5 A bound based on expected expert performance

In this section we show that if the opponent is “flexible” with respect to the available
experts, then the SEA achieves almost surely an average payoff that is asymptotically as
large as what the best expert could achieve against the same opponent.

Theorem 5.1. If an opponentπ is flexible with respect to the experts1, . . . , r, then the
average payoff up to stages, M(s), satisfies

Pr
(
lim inf
s→∞

M(s) ≥ max
e

µe

)
= 1 .

Theorem 5.1 follows from Lemma 5.2, stated and proven below, and Theorem 3.1.

Flexibility comes into play as a way of ensuring that the value of following any given expert
is well-defined, and can eventually be estimated as long as the SEA follows that expert a
sufficiently many times. In other words, flexibility ensures that there is a best expert to
be learned, and that learning can effectively occur because actions taken by other experts,
which could affect the behavior of the opponent, are eventually forgotten by the latter.

Before Lemma 5.2, we present the following auxiliary lemma, which establishes a simple
fact about the number of iterations each expert is selected.

Lemma 5.1. With probability one, each experte is selected infinitely many iterations.



Fix an arbitrary expert strategyσe, and consider the eventZie defined as: “at iterationi,
experte is selected from the uniform distribution over the set of all experts.” Clearly, for a
fixed e, the event: “Infinitely many eventsZie occur” is a subset of the event “Experte is
selected infinitely many times,” so it suffices to show that the former event has probability
one. The eventsZie are independent andPr(Zie) = 1

ir . Hence,

∞∑

i=1

Pr(Zie) =
1
r

∞∑

i=1

1
i

= ∞,

and by the Borel-Cantelli lemma, with probability one, infinitely manyZie s occur. 2

We now present Lemma 5.2, which shows that, under the flexibility assumption, the average
reward achieved by each expert is asymptotically almost surely the same as the reward that
would have been achieved by the same expert, had he been the only available expert.

Lemma 5.2. If the opponent is flexible with respect to experte, then with probability one,
limi→∞Me(i) = µe.

Proof: Let e be any expert. By Lemma 5.1, with probability one, experte is followed
during infinitely many iterations. LetIj = Ij(e), (j = 1, 2, . . .) be the iteration numbers
in whiche is followed. Denote bỹR(Ij) the average payoff during iterationIj , and denote
εIj = R̃(Ij)− µe. Note that|εIj | ≤ u. By Markov’s inequality, for everyε > 0,

Pr(|Me(Ij)− µe| > ε) ≤ E[(Me(Ij)− µe)4]
ε4

.

If we could show that ∞∑

j=1

E[(Me(Ij)− µe)4] < ∞ , (11)

then we could conclude, by the Borel-Cantelli lemma, that with probability one, the in-
equality|Me(Ij) − µe| > ε holds only for finitely many values ofj. This, in turn, would
imply that, with probability one,limi→∞Me(i) = µe . We will show that, if the opponent
is flexible with respect to experte, asn tends to infinity we have

E[(Me(In)− µe)4] = O(n−1−ν), (12)

for someν > 0, which suffices for (11).
We have

n4(n+1)4

16 E[(Me(In)− µe)4] = E
[(∑n

j=1j εIj

)4
]

=
∑

j

j4E[ε4Ij
] + 4

∑

j 6=k

j3k E[ε3Ij
εIk

] + 6
∑

j 6=k

j2k2E[ε2Ij
ε2Ik

]

+ 12
∑

j 6=k 6=`

j2kl E[ε2ij
εIk

εI`
] + 24

∑

j 6=k 6= 6̀=m

jklmE[εIj εIk
εI`

εIm ]

≤ n5 u4 + 10n6u4 + 12n4
∑

j 6=k 6=`

E[ ε2Ij
· |εIk

εI`
| ]

+ 24n4
∑

j 6=k 6=` 6=m

E[ |εIj εIk
εI`

εIm | ] .

By definition, the number of stages during iterationIk is at leastk. Hence,

E[ |εIk
| ] ≤ ck−τ .



Assume, without loss of generality, thatk < `. The number of stages during iterationI` is
at least̀ . Denote byH` the history at the beginning ofI`. By the definition of flexibility,
for any realization ofH`,

E[ |εI`
| givenH` ] ≤ c`−τ .

It follows that

E[ ε2Ij
· |εIk

εI`
| ] ≤ u2 E[ |εIk

εI`
| ]

= u2 E[ |εIk
|] ·E[ |εI`

| givenεIk
]

≤ u2 E[ |εIk
|] ·max

H`
E[ |εI`

| givenH` ]

≤ u2 c2k−τ `−τ .

Assuming, without loss of generality,τ < 1 and using the inequality

n∑

j=1

j−τ ≤ 1 +
n1−τ

1−τ

we get

1
n4

∑

j 6=k 6=`

E[ ε2Ij
· |εIk

εI`
| ] ≤ c2u2

n3




n∑

j=1

j−τ




2

≤ c2u2

n3

(
1 +

n1−τ

1−τ

)2

= O(n−(1+2τ)) .

Finally, a similar analysis gives

E[ |εIj εIk
εI`

εIm | ] ≤ c4j−τk−τ `−τm−τ ,

and

1
n4

∑

j 6=k 6= 6̀=m

E[ |εIj εIk
εI`

εIm | ] ≤
c4

n4




n∑

j=1

j−τ




4

≤ c4

n4

(
1 +

n1−τ

1−τ

)4

= O(n−4τ ) .

Sinceτ > 0.25, condition (12) holds, and the lemma follows. 2

Proof of Theorem 5.1: Theorem 5.1 follows immediately from Lemma 5.2 and Theorem
3.1.

Example 5.1 : Repeated Prisoner’s Dilemma revisited.Consider playing the repeated
PD game against an opponent who plays Tit-for-Tat, and suppose there are only two ex-
perts: “Always defect” (AD) and “Always cooperate” (AC). Thus, AC induces cooperation
in every stage and yields a payoff higher than AD, which induces defection in every stage
of the game except the first one. It is easy to verify that Tit-for-Tat is flexible with respect
to the experts AC and AD. Therefore, Theorem 5.1 holds and the SEA achieves an average
payoff at least as much as that of AC. By contrast, as mentioned in the introduction, in
order to minimize regret, the standard experts algorithm must play D in almost every stage
of the game, and therefore achieves a lower payoff.
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