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Information Geometry on Hierarchy of Probability
Distributions

Shun-ichi Amari, Fellow, IEEE

Abstract—An exponential family or mixture family of proba-
bility distributions has a natural hierarchical structure. This paper
gives an “orthogonal” decomposition of such a system based on
information geometry. A typical example is the decomposition of
stochastic dependency among a number of random variables. In
general, they have a complex structure of dependencies. Pairwise
dependency is easily represented by correlation, but it is more dif-
ficult to measure effects of pure triplewise or higher order interac-
tions (dependencies) among these variables. Stochastic dependency
is decomposed quantitatively into an “orthogonal” sum of pair-
wise, triplewise, and further higher order dependencies. This gives
a new invariant decomposition of joint entropy. This problem is im-
portant for extracting intrinsic interactions in firing patterns of an
ensemble of neurons and for estimating its functional connections.
The orthogonal decomposition is given in a wide class of hierar-
chical structures including both exponential and mixture families.
As an example, we decompose the dependency in a higher order
Markov chain into a sum of those in various lower order Markov
chains.

Index Terms—Decomposition of entropy, - and -projections,
extended Pythagoras theorem, higher order interactions, higher
order Markov chain, information geometry, Kullback divergence.

I. INTRODUCTION

WE study structures of hierarchical systems of probability
distributions by information geometry. Examples of

such systems are exponential families, mixture families, higher
order Markov chains, autoregressive (AR) and moving average
(MA) models, and others. Given a probability distribution, we
decompose it into hierarchical components. Different from the
Euclidean space, no orthogonal decomposition into components
exists. However, when a system of probability distributions
forms a dually flat Riemannian manifold, we can decompose
the effects in various hierarchies in a quasi-orthogonal manner.

A typical example we study is interactions among a number
of random variables . Interactions among them in-
clude not only pairwise correlations, but also triplewise and
higher interactions, forming a hierarchical structure. This case
has been studied extensively by the log-linear model [2] which
gives a hierarchical structure, but the log-linear model itself does
not give an orthogonal decomposition of interactions. Given
a joint distribution of random variables, it is important to
search for an invariant “orthogonal” decomposition of their de-
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grees or amounts of interactions into pairwise, triplewise, and
higher order interactions. To this end, we study a family

of joint probability distributions of vari-
ables which have at most-way interactions but no higher inter-
actions. Two dual types of projections, namely, the-projection
and -projection, to such subspaces play a fundamental role.

The present paper studies such a hierarchical structure and the
related invariant “quasi-orthogonal” quantitative decomposition
by using information geometry [3], [8], [12], [14], [28], [30]. In-
formation geometry studies the intrinsic geometrical structure to
be introduced in the manifold of a family of probability distri-
butions. Its Riemannian structure was introduced by Rao [37].
Csiszár [21], [22], [23] studied the geometry of-divergence in
detail and applied it to information theory. It was Chentsov [19]
who developed Rao’s idea further and introduced new invariant
affine connections in the manifolds of probability distributions.
Nagaoka and Amari [31] developed a theory of dual structures
and unified all of these theories in the dual differential-geomet-
rical framework (see also [3], [14], [31]). Information geometry
has been used so far not only for mathematical foundations of
statistical inferences ([3], [12], [28] and many others) but also
applied to information theory [5], [11], [25], [18], neural net-
works [6], [7], [9], [13], systems theory [4], [32], mathemat-
ical programming [33], statistical physics [10], [16], [38], and
others. Mathematical foundations of information geometry in
the function space were given by Pistone and his coworkers [35],
[36] and are now developing further.

The present paper shows how information geometry gives
an answer to the problem of invariant decomposition for hi-
erarchical systems of probability distributions. This leads to a
new invariant decomposition of entropy and information. It can
be applied to the analysis of synchronous firing patterns of
neurons by decomposing their effects into hierarchies [34], [1].
Such a hierarchical structure also exists in the family of higher
order Markov chains and also graphical conditional indepen-
dence models [29].

The present paper is organized as follows. After the Introduc-
tion, Section II is devoted to simple introductory explanations of
information geometry. We then study the-flat and -flat hi-
erarchical structures, and give the quantitative “orthogonal de-
composition” of higher order effects in these structures. We then
show a simple example consisting of three binary variables and
study how a joint distribution is quantitatively decomposed into
pairwise and pure triplewise interactions. This gives a new de-
composition of the joint entropy. Section IV is devoted to a
general theory on decomposition of interactions amongvari-
ables. A new decomposition of entropy is also derived there. We
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touch upon the cases of multivalued random variables and con-
tinuous variables. We finally explain the hierarchical structures
of higher order Markov chains.

II. PRELIMINARIES FROM INFORMATION GEOMETRY

A. Manifold, Curve, and Orthogonality

Let us consider a parameterized family of probability dis-
tributions , where is a random variable and

is a real vector parameter to specify a distri-
bution. The family is regarded as an-dimensional manifold
having as a coordinate system. When the Fisher information
matrix

(1)

where denotes expectation with respect to , is nonde-
generate, is a Riemannian manifold, and plays the role
of a Riemannian metric tensor.

The squared distance between two nearby distributions
and is given by the quadratic form of

(2)

It is known that this is twice the Kullback–Leibler divergence

(3)

where

(4)

Let us consider a curve parameterized byin , that
is, a one-parameter family of distributions in . It is
convenient to represent the tangent vector of
the curve at by the random variable called the score

(5)

which shows how the log probability changes asincreases.
Given two curves and intersecting at , the inner
product of the two tangent vectors is given by

(6)

The two curves intersect at orthogonally when

(7)

that is, when the two scores are noncorrelated.

B. Dually Flat Manifolds

A manifold is said to be -flat (exponential-flat), when
there exists a coordinate system (parameterization)such that,
for all

(8)

identically. Such is called -affine coordinates. When a curve
is given by a linear function in the -co-

ordinates, where and are constant vectors, it is called an
-geodesic. Any coordinate curve itself is an -geodesic. (It

is possible to define an-geodesic in any manifold, but it is no
more linear and we need the concept of the affine connection.)

A typical example of an -flat manifold is the well-known
exponential family written as

(9)

where are given functions and is the normalizing factor.
The -affine coordinates are the canonical parameters ,
and (8) holds because

(10)

does not depend onand .
Dually to the above, a manifold is said to be-flat (mixture-

flat), when there exists a coordinate systemsuch that

(11)

identically. Here, is called -affine coordinates. A curve is
called an -geodesic when it is represented by a linear function

in the -affine coordinates. Any coordinate curve
of is an -geodesic.
A typical example of an -flat manifold is the mixture family

(12)

where are given probability distributions and ,
.

The following theorem is known in information geometry.

Theorem 1: A manifold is -flat when and only when it is
-flat andvice versa.

This shows that an exponential family is automatically-flat
although it is not necessarily a mixture family. A mixture family
is -flat, although it is not in general an exponential family. The

-affine coordinates (-coordinates) of an exponential family
are given by

(13)

which is known as the expectation parameters. The coordinate
transformation betweenand is given by the Legendre trans-
formation, and the inverse transformation is

(14)
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where is the negative entropy

(15)

and

(16)

holds with . This was first remarked by Barndorff-
Nielsen [15] in the case of exponential families.

Given a distribution in a flat manifold, in the coor-
dinates and in the coordinates have different func-
tion forms, so that they should be denoted differently such as

and , respectively. However, we abuse nota-
tion such that the parameteror decides the function form of

or automatically.
Dually to the above, a mixture family is-flat, although it is

not an exponential family in general. The-affine coordinates
are derived from

(17)

The -function of (16) in a mixture family is

(18)

When is a dually flat manifold, the-affine coordinates
and -affine coordinates , connected by the Legendre trans-
formations (13) and (14), satisfy the following dual relation.

Theorem 2: The tangent vectors (represented by random
variables) of the coordinate curves

(19)

and the tangent vectors of the coordinate curves

(20)

are orthonormal at all the points

(21)

where is the Kronecker delta.

C. Divergence and Generalized Pythagoras Theorem

Let and be two distributions in
a dually flat manifold , and let and be the corresponding

-affine coordinates. They have two convex potential functions
and . In the case of exponential families, is the

cumulant generating function andis the negative entropy. For
a mixture family, is also the negative entropy. By using the
two functions, we can define a divergence fromto by

(22)

Fig. 1. Generalized Pythagoras theorem.

The divergence satisfies with equality when, and
only when, . In the cases of an exponential family and a
mixture family, this is equal to the Kullback–Leibler divergence

(23)

where is the expectation with respect to .
For a dually flat manifold , the following Pythagoras the-

orem plays a key role (Fig. 1).

Theorem 3: Let be three distributions in . When
the -geodesic connecting and is orthogonal at to the
-geodesic connectingand

(24)

The same theorem can be reformulated in a dual way.

Theorem 4: For , when the -geodesic con-
necting and is orthogonal at to the -geodesic connecting

and

(25)

with

(26)

III. FLAT HIERARCHICAL STRUCTURES

We have summarized the geometrical features of dually flat
families of probability distributions. We extend them to the ge-
ometry of flat hierarchical structures.

A. -Flat Structures

Let be a submanifold of a dually flat manifold. It is
called an -flat submanifold, when is written as a linear sub-
space in the -affine coordinates of . It is called an -flat
submanifold, when it is linear in the -affine coordinates of

. An -flat submanifold is by itself an -flat manifold, and
hence is an -flat manifold because of Theorem 1. However, it
is not usually an -flat submanifold of , because it is not linear
in . (Mathematically speaking, an-flat submanifold has van-
ishing embedding curvature in the sense of the-affine connec-
tion, but its -embedding curvature is nonvanishing, although
both - and -Riemann–Christoffel curvatures vanish.) Dually,
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an -flat submanifold is an -flat manifold but is not an -flat
submanifold.

Let us consider a nested series of-flat submanifolds

(27)

where every is an -flat submanifold of . Each
is automatically dually flat, but is not an -flat submanifold.
We call such a nested series an-flat hierarchical structure or,
shortly, the -structure. A typical example of the-structure is
the following exponential-type distributions:

(28)

where is a partition of the entire parameter
, being the th subvector, and is a random vector

variable corresponding to it.
The expectation parameter of (28) is partitioned corre-

spondingly as

(29)

where is expectation with respect to . Thus,
. Here, is a function of the entire, and not

of only.

B. Orthogonal Foliations

Let us consider a new coordinate system called the-cut
mixed ones

(30)

It consists of a pair of complementary parts ofand , namely,

(31)

(32)

It is defined for any .
We define a subset for of

consisting of all the distributions having the same coordi-
nates, specified by , but the other coordinates are
free. This is written as

(33)

They give a foliation of the entire manifold

(34)

The hierarchical -structure is introduced in by putting

(35)

Dually to the above, let

(36)

be the subset in in which the -part of the distributions
have a common fixed value . This is an -flat submanifold.

Fig. 2. Information projection (m-projection).

They define -flat foliations. Because of (21), the two foliations
are orthogonal in the sense that submanifolds and are
complementary and orthogonal at any point.

C. Projections and Pythagoras Theorem

Given a distribution with partition ,
it belongs to when . In
general, is considered to represent the effect emerging from

but not from . We call it the “ th effect” of .
In later examples, it represents theth-order effect of mutual
interactions of random variables. The submanifoldincludes
only the probability distributions that do not have effects higher
than . Consider the problem of evaluating the effects higher
than . To this end, we define the information projection ofto

by

(37)

This is the point in that is closest to in the sense of
divergence.

Theorem 5: Let be the point in such that the
-geodesic connectingand is orthogonal to . Then,

is unique and is given by .
Proof: For any point , the -geodesic connecting

and is included in , and hence is orthogonal to the
-geodesic connectingand (Fig. 2). Hence, the Pythagoras

theorem

(38)

holds. This proves and is unique.

We call the -projection of to , and write

(39)

Let be a fixed distribution. We then have

(40)

Hence, is regarded as the amount representing ef-
fects of higher than , whereas is that not higher
than .
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The coordinates of are not simply

since the manifold is not Euclidean but is Riemannian. In order
to obtain , the -cut mixed coordinates are convenient.

Theorem 6: Let the - and -coordinates of be and .
Let the - and -coordinates of the projection be

and , respectively. Then, the-cut mixed coordinates
of is

(41)

that is, and .
Proof: The point given by (41) is included in . Since

the -coordinates of and differ only in , the
-geodesic connecting and is included

in . Since is orthogonal to , this is the
-projection of to .

In order to obtain the full - or -coordinates of ,
and , we need to solve the set of

equations

(42)

(43)

(44)

(45)

Note that, , . Hence, changes by
the -projection. This implies that does not give
any orthogonal decomposition of the effects of various orders
and that does not give the pure ordereffect except for the
case of .

D. Maximal Principle

The projection is closely related with the maximal
entropy principle [27]. The projection belongs to
which consists of all the probability distributions having the
same -marginal distributions as , that is, the same
coordinates. For any , is its projection to .
Hence, because of the Pythagoras theorem

(46)

the minimizer of for is .
We have

(47)

because depends only on the marginal distri-
butions of and is constant for all . Hence, we have the
geometric form of the maximum principle [27].

Theorem 7: The projection of to is the maximizer
of entropy among having the same-marginals as

(48)

This relation is useful for calculating .

E. Orthogonal Decomposition

The next problem is to single out the amount of theth-order
effects in , by separating it from the others. This is not
given by . The amount of the effect of orderis given by the
divergence

(49)

which is certified by the following orthogonal decomposition.

Theorem 8:

(50)

Theorem 8 shows that theth-order effects are “orthogo-
nally” decomposed in (50). The theorem might be thought as
a trivial result from the Pythagoras theorem. This is so when
is a Euclidean space. However, this is not trivial in the case of a
dually flat manifold. To show this, let us consider the “theorem
of three squares” in a Euclidean space: Let be four
corners in a rectangular parallelpiped. Then

(51)

In a dually flat manifold, the Pythagoras theorem holds when
one edge is an -geodesic and the other is an-geodesic. Hence,
(51) cannot trivially be extended to this case, becausecannot
be an -geodesic and an -geodesic at the same time.

The theorem is proved by the properties of the orthogonal
foliation. We show the simplest case. Let us consider

and let and be the -projections of . We write their
coordinates as

(52)

(53)

(54)

Then, we see that the -projection of to is , al-
though the -geodesic connecting and is not usually
included in . This proves

(55)

The general case is similar.
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F. -Flat Structure

Dually to the -structure, we can study the-hierarchical
structure

(56)

where is an -flat submanifold of . A typical ex-
ample is the mixture family

(57)

where

(58)

The -projection of to is defined by

(59)

We can also show the orthogonal decomposition theorem

(60)

where and .
The quantity

is regarded as theth-order effect of in the mixture family or
in a more general -structure. A hierarchical MA model in time
series analysis is another example of the-structure [4], where
the minimal principle holds instead of the maximal principle [4].

IV. SIMPLE EXAMPLE: TRIPLEWISEINTERACTIONS

The general results are explained by a simple example
of the set of joint probability distributions ,

, of binary random variables and ,
where or . We can expand

(61)

obtaining the log-linear model [2]. This shows that is an
exponential family. The canonical or-affine coordinates are

which are partitioned as

(62)

(63)

(64)

This defines a hierarchical-structure in , where repre-
sents pairwise interactions and represents the triple inter-
action, although they are not orthogonal. The corresponding

-affine coordinates are partitioned as

(65)

where , and ,
with

(66)

(67)

(68)

We have a hierarchical-structure

(69)

where is a singleton with , is defined
by , is defined by . On
the other hand, gives the marginal
distributions of and , and gives the
all the pairwise marginal distributions.

Consider the two mixed cut coordinates:
and . Since are orthogonal to the co-
ordinates that specify the marginal distributions ,

represents the effect of mutual interactions of, ,
and , independently of their marginals. Similarly, defined
by is composed of all the distributions which have no
intrinsic triplewise interactions but pairwise correlations. The
two distributions given by and
have the same pairwise marginal distributions but differ only
in the pure triplewise interactions. Since is orthogonal to

, it represents purely triplewise interactions, as
is well known in the log-linear model [2], [18].

The partitioned coordinates are not orthog-
onal, so that we cannot say thatsummarizes all the pure pair-
wise correlations, except for the special case of . Given

, we need to separate pairwise correlations and triplewise
interactions invariantly and obtain the “orthogonal” quantitative
decomposition of these effects.

We project to and , giving and , respec-
tively. Then, is the independent distribution having the same
marginals as, and is the distribution having the same pair-
wise marginals as but no triplewise interaction. By putting

(70)

(71)

(72)

we have the decomposition

(73)

Here, represents the amount of purely triplewise interaction,
the amount of purely pairwise interaction, andthe degree

of deviations of the marginals offrom the uniform distribution
. We have thus the “orthogonal” quantitative decomposition

of interactions.
It is interesting to show a new type of decomposition of en-

tropy or information from this result. We have

(74)

(75)
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where and are the total and marginal
entropies of . Hence,

(76)

One can define mutual information among, , and by

(77)

Then, (73) gives a new invariant positive decomposition of

(78)

In information theory, the mutual information among three vari-
ables is sometimes defined by

(79)

Unfortunately, this quantity is not necessarily nonnegative ([20],
see also [24]). Hence, our decomposition is new and is com-
pletely different from the conventional one [20]

(80)

It is easy to obtain from given . The coordinates of
are obtained by solving (42)–(45). In the present case, the mixed
cut of is . Hence, the -coordinates of
are , where the marginals and are the same
as and is determined such that becomes . Since we
have

(81)

by putting , the of is given by solving (82)
shown at the bottom of the page.

V. HIGHER ORDERINTERACTIONS OFRANDOM VARIABLES

A. Coordinate Systems of

Let be binary variables and let be
its probability, , . We assume that

for all . The set of all such probability distributions
is a -dimensional manifold , where probabilities

(83)
constitute a coordinate system in which one of them is deter-
mined from

(84)

The manifold is an exponential family and is also a mix-
ture family at the same time. Let us expand to obtain
the log-linear model [2], [17]

(85)

where indexes of , etc., satisfy , etc. Then

(86)

has components. They define the-flat coordinate system
of .

In order to simplify index notation, we introduce the fol-
lowing two hyper-index notations. Indexes , etc., run
over -tuples of binary numbers

(87)

except for . Hence, the cardinality of the index
set is . Indexes , etc., run over the set consisting
of a single index , a pair of indexes where , a
triple of indexes where , and -tuple

, that is, stands for any element in the set
.

In terms of these indexes, the two coordinate systems given
by (83) and (86) are written as

(88)

(89)

respectively. We now study the coordinate transformations
among them.

Let us consider functions of defined
by

otherwise.
(90)

Here, implies that, for ,
. Each is a polynomial of degree ,

written as

(91)

where we put

.
(92)

The polynomials can be expanded as

(93)

or, shortly, as

(94)

(82)
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where we set

(95)

when is . The matrix is a
nonsingular matrix. We have

(96)

where are the elements of the inverse of. It is not
difficult to write down these elements explicitly.

The probability distributions of is rewritten as

(97)

where when and otherwise.
This shows that is a mixture family. The expansion (85) is
rewritten as

(98)

This shows that is an exponential family.
The corresponding -affine coordinates are given by the ex-

pectation parameters

(99)

For

(100)

The relations among the coordinate systems and
are given by the following theorem.

Theorem 9:

(101)

(102)

(103)

(104)

(105)

Proof: Given a probability distribution , we have

(106)

(107)

On the other hand, from (85) we have

(108)

which proves (103). We have

(109)

B. -Hierarchical Structure of

Let us naturally decompose thecoordinates into

(110)

where summarizes with , that is, those consisting
of indexes . Hence has components. Let
be the subspace defined by . Then, ’s form an -hi-
erarchical structure.

We consider the corresponding partition of

(111)

Then, the coordinates consist of all

(112)

for . All the marginal distributions of random
variables are completely determined by . For
any , we can define the-cut coordinates

(113)

C. Orthogonal Decomposition of Interactions and Entropy

Given , is the point closest to among
those that do not have intrinsic interactions more thanvari-
ables. The amount of interactions higher thanis defined by

. Moreover, may be in-
terpreted as the degree of purely orderinteractions among
variables. We then have the following decomposition.

From the orthogonal decomposition, we have a new invariant
decomposition of entropy and information, which is different
from those studied by many researchers as the decomposition
of entropy of a number of random variables.

Theorem 10:

(114)

(115)

(116)

where

D. Extension to Finite Alphabet

We have so far treated binary random variables. The hierar-
chical structure of interactions and the decomposition of diver-
gence or entropy holds in the general case. We consider the case
where are random variables taking on a common
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finite alphabet set . The argument is ex-
tended easily to the case where take on different alphabet
sets . Let us define the indicator functions for by

(117)

where denotes any element in.
Let the joint probability of be . The

joint probability function is now written as

(118)

We now expand as

(119)

where stands for nonzero elements ofand .
The coefficients ’s form the -coordinate system. Here, the
term representing interactions ofvariables have
a number of components as .

The corresponding coordinates consist of

(120)

which represent the marginal distributions of variables
.

We can then define the-cut, in which and
are orthogonal. Given , we can define

which has the same marginals as up to variables, but
has no intrinsic interactions more thanrandom variables. The
orthogonal decompositions of and mutual information in
terms of ’s hold as before.

E. Continuous Distributions

It was difficult to give a rigorous mathematical foundation
to the function space of all the density functions

with respect to the Lebesgue measure on the real
. Recently, Pistoneet al. [35], [36] have succeeded in con-

structing information geometry in the infinite-dimensional case,
although we do not enter in its mathematical details.

Roughly speaking, the-coordinates of is the density func-
tion itself, , and the -coordinates are the function

(121)

They are dually coupled.
We define higher order interactions among variables

. In order to avoid notational complications, we
show only the case of . The three marginals and three
joint marginals of two variables are given by and

, respectively. They are obtained by integrating
.

The corresponding-coordinates are given by

(122)

(123)

(124)

When holds identically, there are no in-
trinsic interactions among the three, so that all interactions are
pairwise in this case. When , , there are no in-
teractions so that the three random variables are independent.

Given , the independent distribution
is easily obtained by

(125)

However, it is difficult to obtain the analytical expression of
. In general, which consists of distributions having

pairwise correlations but no intrinsic triplewise interactions, is
written in the form

(126)

The is the one that satisfies

(127)

(128)

VI. HIGHER ORDER MARKOV PROCESSES

As another example of the-structure, we briefly touch upon
the higher order Markov processes of the binary alphabet. The

th-order Markov process is specified by the conditional prob-
ability of the next output

(129)

where is the past sequence ofletters. We
define functions and

(130)

(131)

Then, the Markov chain is specified by parameters ,
taking on any binary sequences of length.

For an observed long data sequence , let
be the relative number of subsequenceappearing in

. The Markov chain is an exponential family whenis suf-
ficiently large, and ’s are sufficient statistics. The prob-
ability of is written in terms of the relative frequencies of
various letter sequences and

(132)
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Hence, the th-order Markov chain forms an-flat manifold
of dimensions. The set of Markov chains of various orders
naturally has the hierarchical structure

(133)

where is the Bernoulli process (independent and identically
distributed process) and is the first-order Markov chain.

In order to decompose the degree of dependency of a Markov
chain into various orders, we use the following frequencies ob-
served from the sequence . In order to avoid complicated no-
tations, we use as an exemple the second-order Markov chain,
but generalization is easy. We define random variables related
to a sequence by

relative frequency of (134)

relative frequency of (135)

relative frequency of (136)

where is arbitrary

relative frequency of (137)

We summarize their expectations as

(138)

They form a mixture affine coordinate system to specify the
second-order Markov chain, and are functions of , ,

, and . Higher order generalization is easy. In order
to obtain the third-order Markov chain, for example, we obtain
eight ’s by adding and in the suffix of each , for example,

and emerge from . We then have eight quantities
whose expectations form the-coordinates.

The coordinate is responsible only for the Bernoulli struc-
ture. Therefore, if the process is Bernoulli, determines its
probability distribution. The coordinates and together
are responsible for the first-order Markov structure and all of

are necessary to determine the second-order
Markov structure. Therefore, we have the following decompo-
sition of the -coordinates:

(139)

where , , . The param-
eters define the th-order Markov struc-
ture.

We have the corresponding-coordinates, because’s are
linear combinations of ’s. They are given in the parti-
tioned form in this case as

(140)

(141)

(142)

(143)

(144)

(145)

(146)

(147)

We can see here that and together show how the
Markov structure is apart from the first-order one, because
those coordinates are orthogonal to .

The projections to lower order Markov chains are defined in
the same way as before, and we have the following decomposi-
tion:

(148)

where is the projection to theth-order Markov chain and
is a fair Bernoulli process (that is, ).

VII. CONCLUSION

The present paper used information geometry to elucidate the
hierarchical structures of random variables and their quasi-or-
thogonal decomposition. A typical example is the decomposi-
tion of interactions among binary random variables into a
quasi-orthogonal sum of interactions among exactlyrandom
variables. The Kullback–Leibler divergence, entropy, and infor-
mation are decomposed into a sum of nonnegative quantities
representing the orderinteractions. This is a new result in in-
formation theory. This problem is important for analyzing joint
firing patterns of an ensemble of neurons. The present paper
gives a method of extracting various degrees of interactions
among these neurons.

The present theories of hierarchical structures can be appli-
cable to more general cases including mixture families. Appli-
cations to higher order Markov chains are briefly described.
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