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Abstract—To realize an input—output relation given by noise-contaminated examples, it is effective to use a
stochastic model of neural networks. When the model network includes hidden units whose activation values are not
specified nor observed, it is useful to estimate the hidden variables from the observed or specified input—output data
based on the stochastic model. Two algorithms, the EM and em algorithms, have so far been proposed for this
purpose. The EM algorithm is an iterative statistical technique of using the conditional expectation, and the em
algorithm is a geometrical one given by information geometry. The em algorithm minimizes iteratively the Kullback—
Leibler divergence in the manifold of neural networks. These two algorithms are equivalent in most cases. The
present paper gives a unified information geometrical framework for studying stochastic models of neural networks,
by focusing on the EM and em algorithms, and proves a condition that guarantees their equivalénce. Examples
include: (1) stochastic multilayer perceptron, (2) mixtures of experts, and (3) normal mixture model.

Keywords—EM algorithm, Information geometry, Stochastic model of neural networks, Learning, Identification

of neural network, e-Projection, m-Projection, Hidden variable.

1. INTRODUCTION

Neural networks have been remarked as universal
approximators of nonlinear functions that can be
trained from examples of input—output data. When
the data includes noise, the input—output relation is
described stochastically in terms of the conditional
probability p(y|x) of the output y when x is input.
Some neural networks are stochastic in their own
nature, like the Boltzmann machine, so that their
behaviors are also described by probability distribu-
tions and stochastic dynamics (see Guan et al., 1994).
Even when a network is deterministic, it is sometimes
effective to train it as if it were a stochastic network,
although it behaves deterministically in the execution
mode. This is a stochastic model of (deterministic)
neural networks. This suggests the usefulness of
statistical ideas in neutral networks (see, e.g.,
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Amari, 1990; Cheng & Titterington, 1994; Ripley,
1994; White, 1989, Guan et al., 1994).

Another quite different but important idea for
developing a theory of neural networks originates
from geometry. Let us consider a neural network
including modifiable parameters (connection weights)
summarized in a vector form 8 = (8;,...,6,). Then,
the set of all the possible neural networks realized by
changing 0 forms an n-dimensional manifold S,
where @ plays the role of a coordinate system of S.
This is called the manifold of neural networks.
Geometry of a neural manifold is useful for under-
standing the total capability of a class of networks.
When a network is of a stochastic nature, each
network is accompanied with a probability distribu-
tion p(x; @) or a conditional probability distribution
p(y|x; 8). Information geometry (Amari, 1985;
Csiszar, 1975; Chentsov, 1972) connects these two
sources of ideas. It originated from the information
structure of a manifold of probability distributions
and has been developed to be a new mathematical
framework with new differential geometrical notions.
It has been successfully applied to various informa-
tion sciences such as statistical sciences (e.g., Amari,
1982, 1985, Barndorff-Nielsen, 1988; Barndorfi-
Nielsen, Cox, & Reid, 1986; Barndorff-Nielsen &
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Jupp, 1989; Murray & Rice, 1993; Kass, 1989; Amari
et al., 1987), information theory (Amari & Han, 1989;
Amari, 1989), systems theory (Amari, 1987a; Ohara
& Amari, 1992), and many others. Applications to
neural networks have already started with Amari
(1991), Kawanabe and Amari (1994) and Amari,
Kurata, and Nagaoka (1992).

The present paper unifies the statistical and
geometrical ideas for studying neural networks
including hidden units or unobservable wvariables,
trying to establish a new information—geometric
framework. In most learning neural networks, a
desired input—output relation is specified by exam-
ples, but the activation values of hidden units are
unobserved or left unspecified. It is convenient if they
could be determined or filled in adequately such that
the total network behavior is in a good agreement
with the given input—output data. This is the hidden
variable problem and can be regarded as a kind of
credit assignment.

Two approaches have so far been proposed to
solve this problem. One is information-geometric.
Let us consider a manifold S of all the related
(conditional) probability distributions, which might
not be realizable by neural networks. Those that are
realizable by neural networks form a submanifold M
of neural networks in S. On the other hand, observed
data suggest some distribution (e.g., one given by the
empirical distribution) in S. However, because
observation or specification is incomplete, the
observed or specified partial data define many
candidates of points in the manifold S that form a
submanifold D. The best neural network is the one
that minimizes the distance between the realizable M
and the observed D. One can use the Kullback—
Leibler divergence between D and M as the distance
measure. This is a dual or alternative minimization
problem, and the network in M that minimizes the
divergence is selected as the optimal one. At the same
time, the point in D that minimizes the divergence
gives the estimated data complementing the partial
observed data. This approach was proposed by
Csiszar and Tusnady (1984). The same idea was
used in Amari et al. (1992), Byrne (1992), and
Shimodaira (1993) (see also Amari, 1991; Neal &
Hinton, 1993). This may be called the em algorithm,
because it is realized geometrically by the e-geodesic
and m-geodesic projections to be explained later.

The other approach is statistical, using the EM
(Expectation and Maximization) algorithm. This is
an iterative algorithm of obtaining the maximum
likelihood estimator in M, where the conditional
expectation of the missing data is used to choose one
candidate point in D. The EM algorithm has been
applied to the Boltzmann machine (Byrne, 1992), the
hierarchical mixture of experts (Jordan & Jacobs,
1994; see also Jacobs et al., 1991, for the mixture of
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experts), and others (Yuille, Stolerz, & Utans, 1994;
Baldi & Chauvin, 1994; Streit & Luginbuhl, 1994). A
new formulation and acceleration method is pro-
posed in this connection (Neal & Hinton, 1993; see
also Jordan & Xu, 1994; Xu, Jordan, & Hinton,
1994).

The present paper elucidates the relation between
the statistical EM algorithm and the geometrical em
algorithm reported in short notes (Amari, 1995).
They are the same in most cases, and we prove a
necessary and sufficient condition that guarantees
their equivalence. We also give a simple example
where the two algorithms give different solutions. By
using the geometric method, it becomes much easier
to understand the characteristics of the EM algorithm
and its various versions. Moreover, we propose a
learning version of the EM algorithm where the data
are observed sequentially. A learning algorithm
might be in general slower than the batch algorithm
where all the accumulated data are available at a
time. But the former is more flexible under a changing
environment and its algorithm is much simpler.

We use a number of examples to explain our
information—-geometry approach. These examples are
important by themselves:

1. Stochastic multilayer perceptron. Qur theory gives
a new learning algorithm different from the back-
propagation method. The new algorithm seems
more flexible with a better global convergence
property than the back propagation (an indepen-
dent study on the stochastic perceptron by
Rumelhart, personal communication). This mod-
el is also related to that by Murray and Edwards
(1994).

2. Normal mixture. This has been studied well in
statistics. The radial basis function method is
closely related to it. Neal and Hinton (1993) gave a
new interpretation connecting it with geometry.
Streit and Luginbuhl (1994) studied stochastic
multilayer perceptron with the normal mixture
and the EM algorithm.

3. Mixtures of expert networks, where the input
signal space is automatically divided into regions
such that signals in a region are processed by an
expert network corresponding to this region. It is
hidden in the input-output data, which signal
should be processed by which expert network.
This 1s a self-organizing network proposed by
Jacobs et al. (1991), further generalized by Jordan
and Jacobs (1994) (see Jordan & Xu, 1994; Xu,
Jordan, & Hinton, 1994).

The present paper does not intend to present a
detailed study of the above interesting models and
related algorithms, but aims at theoretical elucidation
of the geometrical structures underlying the EM and
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em algorithms as well as an introduction to the
information geometry and the EM algorithm. The
geometrical aspect suggests various new algorithms
including learning. The present paper does not study
the computational aspect of the algorithms nor show
computer simulated results. These remain to be
studied separately in the future by applying the
framework proposed in the present paper. Applica-
tions to hidden Markov random fields (Geman &
Geman, 1984; Besag & Green, 1993; Kiinsch, Geman,
& Kehagias, 1994; Baldi & Chauvin, 1994), dynamics
of Boltzmann machines with asymmetric connec-
tions, etc., are also important subjects of future
research.

The present paper is organized as follows. Section
2 is devoted to an introduction to the exponential
family and curved exponential family, which are basic
statistical models. Section 3 is a statistical preliminary
where the maximum likelihood estimation is ex-
plained in terms of geometry. Readers familiar with
neural networks and statistics may skip these
sections. Section 4 introduces the main framework
of the present theory. The set M of neural networks is
shown to be embedded in the manifold S of related
probability distributions as a submanifold. The
partial observed data also defines a submanifold D
in S. The problem is to find a network in M and
filled-in data in D that minimize the Kullback—Leibler
divergence between D and M. The statistical EM
algorithm and the geometrical em algorithm are
introduced in Section 5. They are analyzed in Section
6, the main part of the present paper, in terms of
information geometry. The two algorithms are shown
to be equivalent in most practical cases in Section 7.
Section 8 treats learning procedures and Section 9
studies dual geodesic gradient flows in M and D.
Section 10 studies the normal mixture and the
mixture of expert nets. The Appendix gives a short
intuitive introduction to information geometry.

2. EXPONENTIAL FAMILIES AND NEURAL
NETWORKS

Exponential families of probability distributions are
explained in the beginning. Let us consider a family
of probability distributions of a random variable x
(which may be a vector) whose probability density
functions are specified by an n-dimensional param-
eter @ = (6y,...,6,). When the probability density
functions are written in the following form

p(x;0) =exp {Z": 0,~ri(x)+k(x)—¢(0)}, (1)

where ri(x), i =1,...,n, are functions of x, the
family § = {p(x; )} is called an exponential family
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(Cox & Hinkley, 1974; Barndorff-Nielsen, 1978). We
may treat r=(r,...,7r,) €R" as a new vector
random variable whose distribution is specified

p(r; 8) =exp {i O;r; —'¢r(0)} (2

i=1

with respect to a suitable measure x(r) on R”. Here,
the term k(x) and the Jacobian density due to the
transformation from x to r is absorbed in p(r). The
present paper treats such a case that x is a vector
composed of a visible part s, and a hidden part s;,
X = (Sy, sp). In this case, we have r = r(s,, sz).

The set S of the probability distributions can be
regarded as an n-dimensional manifold (space), where
0 plays the role of a coordinate system introduced in
S (Amari, 1985). Any point (that is, any distribution)
in S is specified by one 8. The 0 is called the natural
or canonical parameter of the exponential family. To
show that many important families of probability
distributions are of exponential type, we give
examples.

2.1. Simple Examples

Example 1. Normal distributiens. Let x be a normal
random variable subject to N(pu, 02), that is, with
mean yu and variance o2,

_ 2
plxp 0% = \/21“—0 exp {sz‘,f) }

The set of all the normal distributions forms a two-
dimensional manifold with a coordinate system
(u, 02). This is an exponential family, because by
putting

n=x, r=x?

N
01 = 02 ) 02 = 202 3
uie distribution is rewritten as
p(r; 8) = exp{fir + 0;r; — ¥ (0)}, (3)

with respect to the
6(ry — r?)drydr,, where

delta measure du(r)=

»(0) = g—z + log(v2ma)

=—5(6.)’6;" — 1 log(~62) +1 log .

Example 2. Discrete distributions. 1et x be a
discrete random variable taking values on the set
A={0,1,...,n}. Let p=(po,p1,---,ps) be the
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P
1
FIGURE 1. Manifold of probabliity distributions.

probability vector,

pi =Prob{x =i}.

Then, any distribution on A4 is specified by a vector
p satisfying X p; = 1, p; > 0. Hence, the set of all the
discrete distributions S = {p} over A4 is an n-
dimensional manifold. Figure 1 shows that S is a
triangle in R?® when n = 2. This is an exponential
family. Indeed, by putting

Pi .
0;=log —, i=1,...,n
gPo
r,-:&,-(x), i= 1,...,"

where 6;(x) = 1 when x = i and §;(x) = 0 otherwise,
we have

p(r; 8) = exp {Z Oiri — 1/)(9)}, 4)

$(8) =~ log po = log{1+ 3 exp(6))}.

Example 3. Normal mixture with hidden variables.
Let us consider k + 1 normal distributions subject to
N(ui, 0%),i=0, 1,... k. Let z be a discrete random
variable taking values on {0, 1, ..., k} with probabil-
ities p; = Prob{z =i}, i =0,...,k. Let x be a real
random variable depending on z and is subject to the
normal distribution N (u;, 0?) when z = i. Then, the
joint distribution of (x, z) is written as

Usually z is not observed, and the marginal
distribution of x is

pix, z) 26

\/i?a,

. . 2
P =Y S exp{—("za’;" } (®)

which is called the normal mixture distibution. This
form can be regarded as a radial basis expansion of
p(x). The logarithm of the probability (6) is written,
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by eliminating 8(z) from 3%, 6;(z) = 1, as

I(x, z) =log p(x, 2)

“"x——x +26

+ log( pooo) 5 — log(v2r).
0
Hence, by putting
rm=x, b = &;,
9
1
ny=x?%, 612 = 5,3
0
2 2
i O Hi
ry = 6;(z), 0 = logﬁ - (T‘lz - 2—1293)’
i Mo
ry = X5i(z), 0 = ;'2‘ - 0(2] ,

=, 0= (57 55)
i 0

where i = 1,...,k, we can show that this model is an
exponential family,

p(x, z; 8) = exp{@ -1 — 9 (0)}, (7

where 0 - r = X 0;;r;;. The set of the normal mixtures
(6) without z is not an exponential family.

2.2. Stochastic Multilayer Perceptron

We use a stochastic perceptron to explain the general
geometrical idea.

Example 4. Stochastic model of multilayer percep-
tron (cf. Amari, 1991). Let us consider a one hidden
layer perceptron with a single output unit (Figure 2).
Let x be an input vectorand let z = (z;),i =1,...,m
be the outputs of m hidden units, z; taking on the
binary values 0 and 1. The probability of z; =0, 1,
when x is input, is written as

exp{w; - x}

plz=1]x) = 1 + exp{w; - x}
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FIGURE 2. Stochastic multilayer perceptron.

where w; is the synaptic weight vector of the ith
hidden element. The threshold term is included in w;
by adding a constant input xo=1 so that
x = (X0, X15-.,Xn),

n
WX = E Wi X; + Wig.
j=1

The probability p(z;=0|x) is equal to
1 — p(z; = 1|x). We introduce the sigmoidal function

exp(zu)

ez, u) = T+ exp(a)

(8)

and summarize the probabilities as
p(zi|x) = p(zi, Wi x).

The output unit receives signal z from the hidden
layer and emits a binary output y. Its probability is
given, depending on the hidden signal z, by

p(ylz)znp(y,v“z), (9)

where v is the synaptic weight vector of the output
unit. Here, a constant input zy =1 is added as
z = (zp, 2},..-,Zm) SO that the bias term is also
included in v,

m

V- Z= E ViZ; + V.

i=1

Given an input signal x, the conditional prob-
ability of variables (y, z) is given by

p(yzlx;u)=p(yz;u) [[ p(zilx;w),  (10)
i=}
where the parameter u summarizes all of wy,...,w,,
and v,
u=(W,..., Wy, V).

The usual multilayer perceptron is a deterministic
analog machine, where the outputs z; and y are given
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by using the sigmoidal functions as
z,-=go(l,w,--x), Y=‘P(1,V'z)-

They are equal to the expected values of z; and y in
the stochastic model of perceptron. The stochastic
model is used for the purpose of training the machine,
but we can use the ordinary deterministic model for
information processing after the training is com-
pleted.

When x is randomly generated subject to a
probability distribution g(x) >0, x € X, the total
probability distribution of (y, z, X) is written as

P,z x;w) =q(x)p(y, z|x; u), (11)

where ¢(x) may be unknown. However, by taking the
logarithm,

1(y, z|x; w) = log p(y, z|x; w), (12)
I(y, z, x; u) = log p(y, z|x; u) +log ¢(x), (13)

we see that maximizing the logarithm of the total
probability (13) with respect to u is the same as
maximizing the logarithm of the condition prob-
ability (12).

To see if this family of distributions is of
exponential family, we calculate the logarithm,

I{y, z, x|u) =yv-z+Zz,-wi-x — log{1 + exp(v-z)}

=2 {1+ exp(wi - x)}.

Let us denote by k the values of z, that is, k is an m-
dimensional vector whose components take on {0, 1}.
By introducing the delta function

=k
ao-{g 1o¢ (14)

we have the following relations

v-z= Z Oe(z)k - v,
log{! + exp(v-2)} = Z 5y (z) log{l + exp(k - v)}
k

Z ZiW; X = Z Su(z)wi - X,
X

i
where

wk:Zkiwh k:(ki)- (15)

Note that kg is always equal to 1 corresponding to the
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bias term zg = 1, and we put wy = 0 for consistency.
Here, we regard 6x(z) as 2™ random variables or a
2™-dimensional vector random variable indexed by k,
k taking on 2™ values. Then, the log likelihood (the
logarithm of probability considered as a function of
parameter u) is rewritten as

Iy, 2% 0) =¥ k-vy6u(®)
k

= bx(z) log{1 + exp(k - v)}
k

+ Z Ox(Z)wy - X
k

— Z log{1 + exp(w; - x)}. (16)

We now show that the family .S of the conditional

distributions {p(y, z|x; u)} of perceptron is an
exponential family. To this end, we put

rix = yu(z),
’ 17
nx= 5k(2), (7
and
Olyk =k- v,

62 x = wy - x — log{1 + exp(k - v)} (18)

We then have, from eqn (16),
p(r|x; u) = exp{r-0 -},
where r = (r x, r2,x), 8 = (61,x, 2 x),

0-r=z Gl‘kr,,rfz 02k, x
k k

and

#(8) = _ log{l +exp(w; - x)}.

Hence, S is an exponential family.

2.3. Repeated Observation and Product Space

Letry, ry,...,rr be T independent observations from
the same distribution p(r; @). Their joint distribution
is given by

p(r, 1, rr; 8) = [] p(rs; 0).

1=1

When p(r; 8) is of exponential type, we have from
eqn (2),

pr,...,rr; 0) = exp{(z r,) -0 - T<p(0)}.
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Hence, this is again of the same exponential type
distribution if we replace the random variable r by the
sum Xr, of all the observations.

However, when conditional distributions
p(y, z|x) are considered, we encounter a different
situation. Let (y,, z;, x;), t =1,..., T, be T indepen-
dent observations from the same network of
exponential type. In this case, as seen from eqn
(18), the canonical parameter 8 depends on x as is
shown

p{r; 8(x)} = exp{0(x) - r — ¥}, (19)

where r =r(y, z). A neural network is trained by
giving various input signals x and corresponding
outputs y, where x is not fixed. When T independent
data (x;, y1, 21), ..., (X1, Y1, ZT) are given, the joint
conditional distribution is written as

iy, ), (s 2r) X4, - - -, X7}
= 1T pirs 0x)} = exp {3 0(x) 7= 30 i} 20

This forms an exponential family of larger dimen-
sions. Let

S, = {p(r; 8(x,)} (21)

be the manifold of conditional probability distribu-
tions corresponding to the sth input x,. Then, the
joint conditional distributions (20) are given by the
product space
S’,vZSlXSzX'"XST. (22)
Here, the random variable 3 in S% is
l'.T= (l'l,.. . ,I'T),
the canonical parameter in S7 is
0, = {6(x)),...,0(x7)},
and eqn (20) is rewritten as
p(ry; 07) = exp{07 - 17 — %07}, (23)
where
T
0r - rr=> 0,1,
t=1

T

p(07) =) {8(x))}.

=1
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It should be remarked that T=
{0(x1),...,0(x7)} cannot take arbitrary values,
because all of O(x,), 1=1,...,T, are restricted by
the common network parameters w;’s and v in the
form of eqn (18). Hence, possible 07 is restricted in a
subregion of S%. This is a curved exponential family
explained in the next section.

2.4. Curved Exponential Families

A smaller set of distributions that occupies a part of
an exponential family S is called a curved exponential
family when they form a submanifold Af embedded in
S. Let S = {p(r; 0)} be an n-dimensional exponential
family and let M be its m-dimensional submanifold.
Let w= (u1,...,um), m<n, be a parameter or a
coordinate system of M. A curved exponential family
M = {p(r; 8(u))} consists of the distributions

p(r; 8(u)) = exp{B(u) - r — y(6(u}))}, (24)

where 6(u) is a function of u. So the distributions are
parameterized by u. Any distribution p(r; 8(u)) in M
belongs to S, and @(u) is the coordinates in S of the
point u of M. In terms of geometry, M is a
submanifold of § (Figure 3) composed of points
written as

6 = 6(u). (25

This is a parametric representation of M, where u is
an inner coordinate system of M.

Example 5. Normal multiplication model. Let = be a
normal random variable subject to N (0, 1), that is,
the normal distribution with mean 0 and variance 1.
We input a signal of the magnitude 1 to some
unknown system to know how the signal is amplified
or damped. The signal is contaminated by noise ¢ so
that s =1 +¢ is input. It is then multiplied by an
unknown quantity u that we want to know. There-

FIGURE 3. Curved exponential family.
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Rt
FIGURE 4. Example of curved exponential family.

fore, the final response signal is x = us = u(1 + ¢€).
The problem is to estimate the amplfication factor wu.
The observed

x=u(l+e¢)

is subject to N(u, u?). The set M of all such
distnibutions is a curved exponential family em-
bedded in S = {N(u,0?)}. Indeed, when the dis-
tribution is in M, its mean x4 and variance o2 are not
independent but are specified by a common u as

so that M forms a curve in § (Figure 4). Here u is the
coordinate of M. In terms of the natural parameter 0,
the coordinates of points in M satisfy

==, b6,=-— (26)

1 1
u 2u?’

The shape of M is a parabola in S.

Example 6. Multiple observation in stochastic
perceptron. Let us consider multiple observations in
the stochastic multilayer perceptron. The probability
distributions are written as

p(ry; 07) = exp{07-r; — ¥}. (27

Here, 07 = (8, 0,,...,07) is the coordinates of the
product space S%. Let u be the parameters of the
underlying neural network, consisting of w;’s and v.
Then, the distribution realized by the neural net of
parameter u has the 8% coordinates given by

0, =0(x,u), t=1,...,T. (28)

When x,, t=1,...,T, are given, u is the only free
parameter in 07. Hence, the set M7 of probability
distributions of stochastic perceptron forms a
submanifold in S%. This is a curved exponential
family with the inner coordinate system w. The
dimension number of S% increases without limit as
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T tends to infinity, but that of M% is the number of
the network parameters u and is fixed.

3. GEOMETRY OF OBSERVATION AND
ESTIMATION
3.1. Expectation Parameter

We consider the geometry of observation in an
exponential family S or in a curved exponential
family M embedded in S. Here it is presumed that all
the random variables are visible, as a preliminary of
the hidden variable case. A distribution p(r; 8) is
specified by parameter 0 in .S, where r is the random
variable. Let m be the expectation of the random
variable r with respect to the distribution p(r; 6),

(0) = Eolr] = j rp(r; 0)du(r), (29)

where Ey denotes the expectation with respect to
p(r; 0). By differentiating the identity

]p<r; 0)dyu(r) = j exp{®- ¥ — P(O)}du(r) = 1

with respect to 0, it is easily shown that 0 () is given
by

n(0) = 5 (0). (30)

Moreover, it is known that the transformation
between @ and m is one-to-one. Therefore, this m
can be used as another coordinate system (parameter)
of S to specify the distributions. We call ny the
expectation parameter. Equation (30) is inverted as

0= 6(n). (31

Let ¢(m) be the negative of the entropy of the
distribution p*(r; m) specified by 7,

pm) = J p’(r;m) log p*(r; m)du(r),

where
p’{r;m(0)} =p(r; 0).

Then eqn (31) is given explicitly by

(sece Amari, 1985).

S. Amari

Example 7. Examples of the mj-coordinates. In the
case of normal distributions (Example 1), the
expectation parameter is

L (32)
2

2
1
2 2 2 _ P
m=Ex=p‘+0o —(202) T (33)

In the case of the discrete distributions (Example 2),

6i
m= BB =p = s (4
In the case of S={p(y,z;0)} in Example 4 of
stochastic perceptron,

n=(N1x N2.x)
is given by

Mk = E[yéu(z)] = (1, v- k)L p(k;, W; - x)
N2x = E[ak(l)] = H¢(k,, W; - X). (35)

The expectation parameter is useful for studying
the maximum likelihood estimator (m.l.e.). Let ¥ be
an observed value of the random variable r in an
exponential family S = {p(r; 8)}. In this section, it is
assumed that all the random variables are observable.
Let @ be the m.le. that maximizes the likelihood
function p(i; 8) or its logarithm

I(F; 0) =0 - F — 1(0). (36)

By differentiating eqn (36), the m.l.e. & is proved to
satisfy

al
=i—§6¢(0)=i'—11(0)=0.

FT)
The m.lLe. @ is given by solving the above equation.
When we use the n-coordinates, the m.l.e. is directly
given by the observed value itself,

f=F (37)

If we want to obtain 0, we need to calculate & = 8(#),
I T
0= o p(M).

The 1 or the m.Le. 0 in the 0-coordinate determines a
distribution p(r; 8), that is, a point in S. We call it the
observed point. Its m-coordinates are the observed
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value of r itself. This looks rather trivial in an
exponential family, but is not so in a curved
exponential family, in particular, in repeated ob-
servations, as is shown in the next subsection.

3.2. Repeated Observation and Observed Point

Let ry,...,rr be T independent random variables,
where r, is subject to the distribution p(r,; 6,) in an
exponential family S;. The joint probability distribu-
tion is given by

T
HP Iy 01

1=

p(rla"'7rT; 011'-'7

as
p(ry; 07) = exp{0} - 1} — ¢}

This is an extended exponential family S%. Its
expectation coordinates n} = (m;,...,my) are given
by

M, = Ep, [r]. (38)

When fy,...,Fr are observed, we have the observed
point in S% whose expectation coordinates are

Ay = (..., (39)
The corresponding m.l.e. é*T is given by solving

é, — a‘g(::t) )

In the case of neural networks, @, is determined by
the ¢th input x, and the common network parameter
u,

0, = 0(x,, u). (40)
The corresponding m-coordinates are written as
M, =N (x;, u) = Ey,[r]. (41)

The eqn (40) or (41) defines a curved exponential
family M* in S} The observed point /% or GT 1s not
necessarily mcludcd in M because it does not satisfy
eqn (40) or (41). Hence, we need to project it to M to
obtain the m.le. @& This is studied in the next
subsection. Before that, we show a simple case of
i.i.d. observations.

Let us consider the case where all the r, are subject
to the same distribution p(r; 8), so that
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holds. This is the case of repeated observations in
statistics, and the joint distribution is summarized in

p“h“.Jﬁﬂ)zem){E:IFO—TVKM}. (42)

It is then possible to reduce the extended direct
product space S7 into a single S.

To this end, we introduce the new random
variable,

Z (43)

"]l

which is the arithmetic mean of 7 random variables.
The joint probability (42) can be transformed into the
distribution of ¥,

p(F; 8) = exp{T(r - 0) + k(F) — ¥ (0)}, (44)

where k(r) is given rise to by the transformation of
random variables from (r;,...,r7) toT,

exp{Tk(®)} = | ] duw),

the integration being taken over the region of

(ry,...,rr) where the arithmetic mean of ry,...,rr
1s ¥. However, eqn (44) shows that the probability of
(ri,...,rr) is given through their arithmetic mean T,

implying that ¥ is a sufficient statistic for estimating 0
or u (see standard textbooks on statistics, for
example, Cox & Hinkley, 1974; Rao, 1973). Hence,
the distributions of T again form the same type of
exponential family as S, except for the scale factor T.
The term k(r) can be eliminated by using the
dominating measure

di(r) = exp{Tk(T)}dp.

So it is possible to discuss repeated observations and
estimation in the framework of the manifold S
without referring to the product space S%. How-
ever, this holds only in the i.i.d. case, and we need to
consider S in the general case.

The m.le. ® from the observed data ry,...,ry is
given by maximizing p(F; 8) or v-0 — ¢(0) in an
exponential family S without referring to S%. By
differentiation, it is given by the solution of

Fr=_— (0). (45)
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In terms of the {m}-coordinates, this is simply given
by

f=F (46)

when ¥ is observed. We call the distribution p(r; @) or
the point #4 in S in the wm-coordinate system the
observed point. The observed data r;,...,ry are
simply summarized into the single observed point
(i.e., the m.l.e)) ) in S in the m-coordinate system
without any loss of information in the sense of
Fisher.

3.3. Estimation in Curved Exponential Family

Let us consider the m.le. in a curved exponential
family M embedded in S. In the ii.d. case, the
observed data ry,...,ry are summarized in the
observed point f§ =T in S. This is a point of S but
it does not necessarily belong to M. The m.l.e. @ or
the corresponding distribution @(#) € M is given by
maximizing the log likelihood

I(r; u) =1-0(u) — 3 {B(u)} (47)

with respect to u.

It is known that maximizing the likelihood is
equivalent to minimizing the Kullback—Leibler
divergence. The KL divergence from a distribution
p(r; 8) to another distribution p(r; 0) is given by

/ _ .o P(l’; 0’)
K@ [0) = [ p(r 0) tog 27 auie
= o(8) -0+ (0) 3)

where
—p(®@) = H(®) = —jp(r; o) log p(r; )du(r) (49)

is the entropy of the distribution p(r; ') and m’ is the

FIGURE 5. Maximum likeiihood estimation.

S. Amari

n-coordinates of @’. Therefore, maximizing the log
likelihood (47) is equivalent to minimizing the KL
divergence K(6]|8(u)) from the observed point 9 to
points 8(u) belonging to M. This implies that the
m.l.e. 8(@) is the point in M that is closest to the
observed point @ or 7 in S (Figure 5). Geometrically,
the m.le. 8(i) is given by m-projecting 0to M, asis
explained in the Appendix. It is given by solving the
likelihood equation

2 {F-0(a) - $(8(u))} =0.

Because of

n( = 22000,

by introducing the matrix

B(u) = ——"’f;f,“) = (a____g;(;n))’ (50)

the likelihood equation is given by
B(u){t —m(w)} =0. (51)

In the direct space S¥, the KL divergence from 67 to
07 is decomposed as

K(07)07) =) k(6 0,)

= —z H(6)) "Z "ly'er‘l‘z ¥(0). (52)

Hence, the m.le. & is the point 0% (i) in M* that is
closest to the observed point ©i7=7* € S} . The
likelihood equation is

T

Z B(x,, w){t, — n(x,, u)} =0, (53)
where
B(x, u) = -‘”(%“—). (54)

4. HIDDEN VARIABLES AND DATA
SUBMANIFOLD D

4.1. Partial Observation

The present paper treats the case where some parts of
random variables cannot be observed. For example,
the activations of hidden neurons might not be
observed. Moreover, in neural learning, only a
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desired input—output relation is specified without any
specification on the desired outputs of hidden
neurons. They should be determined adequately
such that the input—output relation is approximated
well. This subsection studies the simplest case where
some constituents of the sufficient statistics r are not
observed.

The sufficient statistic r is a vector function of
basic random variables, say x, y, and z in the case of
neural networks. Some of them are observable or
specifiable but some are not. For example, x and y
are observable but z is not. In general, we represent
the sufficient statistic r in terms of r = r(s,, s;), where
s, is observed like x and y but s; is not. Because s, is
missing, we cannot identify the observed point ) =r
uniquely. Instead, given s,, we have candidates of the
observed point f) = r(s,, s), where s, takes arbitrary
values. The candidate points form a submanifold D
called the observed data submanifold. It is defined as
follows:

D ={q|f = r(s,, s);
s, being fixed at the observed value and s,

taking arbitrary values}. (55)

In many cases, r is linear in s; so that
tr(s,, s)) + (1 — 0)r(s,, s2) € D for 0<t<1 when
r(sy, s), x(sy, s2) € D. When s; is a discrete vector
variable, D consists of a number of candidate points,
where hidden s, is subject to a probability distribu-
tion. In this case, we extend D into a linear
submanifold in the m-coordinates by taking all the
linear combinations of the candidate points in it.
We first consider the simplest case, where r itself is
divided into two parts, the visible and hidden parts,

r=(r,, Iy), (56)

where r, can be observed but r; are hidden. Sor, =s,
and r, = s;. Because r, part is missing, the observed

FIGURE 6. Data submanifoid D : v =fixed.
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r, gives the observed data submanifold in the
following simple way,

D = {4 = (W, W) |0, =1, W, : arbitrary}.  (57)
This forms an hA-dimensional submanifold in S
(Figure 6), called the data submanifold or observed
submanifold based on partial observation, where 4 is
the dimension number of r;. It should be remarked
that D is linear in the m-coordinate system and m,
plays the role of an inner coordinate system of D.
When all the data are observed, there are no hidden
components and D reduces to the single observed
point fy.

In a general case where r is not divided in (r,, rs)
but D is still linear in the m-coordinates, we have a
linear transformation of m to 7 by using a
nonsingular matrix 4

f=A4w, F=Ar (58)
such that 7 is divided into | = (W,, 1;), where 1, is
given from the observed variables whereas ¥, is
arbitrary. However, the m-coordinates and 8-coordi-
nates are dually coupled. Therefore, when we use -

coordinates, we need to use the related 8-coordinates
given

0=4'e (59)

contravariantlty to (58). Then, the probability
distribution of ¥ is written as

p(F; 8) = exp{0-F - ¥(0)},

so that @ is the new canonical parameter, and

is the expectation parameter such that ¥ = (¥,, Is).
We show two examples.

Example 8. Partial observation in the normal
multiplication model. Let x),...,x7 be independent
normal random variables subject to N(u, u%). The
sufficient statistics are T = (ry, ry)

where we assume that r, is observed but r, is hidden.
The statistical model M = {N(u, u?)} is a curved
exponential family embedded in S = {N(y, o2)}
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FIGURE 7. Example of data submanifold D and observed point 1.

given in Example 5. The corresponding m-coordinates
are

= H=
na=p?+ o =2’

When r, = 7 is observed, the data manifold is given
D ={N(p, ¢¥)|u =F, o*isarbitrary}

(see Figure 7). When both Xx, and T x? are
observed, we have a unique observed point Ty =f.
The best estimator is given by m-projecting 1) to M.
In the hidden case, we do not know the exact
observed point but we know only that it is in D.

Example 9. Data submanifold of the stochastic
perceptron. The random variable r(¢) at time ¢ is
composed of (rik s 2k, and the observed point
N, = (r,x,, 2,k ;) is written in terms of (y,, z,) as

Mk =1k = Vibx(Ze),

N2,k = ok, = Ok (%)

where y, is observable but §x(z,) are not. There are
many candidate points depending on the value of z,.
We take their linear combination in the wm-coordi-
nates. Let ax be the weight attached to 6y(z;) for
forming their linear combinations. Then, the ob-
served data submanifold D, is

D, ={m|nix =yaw, n2x = ax}, (60)

where ay’s are the free parameters satisfying
Z ag = 1.
k

The data submanifold is

D} =D, x - x Dy,

which is a linear submanifold of S% in the m-
coordinates. We may interpret that ax denotes the
probability of z, = k, which is unobservable.

S. Amari

5. EM ALGORITHM AND em ALGORITHM

5.1. The EM Algorithm

It is required to obtain a good estimator @ from
partially observed data D or D%. Two algorithms are
known to solve the hidden variable problem. One is
the EM algorithm. The EM algorithm is a statistical
technique for calculating the m.l.e. from partially
observed data (Dempster, Laird, & Rubin, 1977). It
may be regarded as an iterative procedure of
estimating both the true parameter u and the missing
data at the same time. We first show the original idea
of the EM algorithm and its generalization called the
GEM algorithm (Dempster, Laird, and Rubin 1977;
Baum et al., 1970).

Let M = {p(r;0(u))} be a curved exponential
family from which data r is generated. When the
data F is observed, the m.le. @ is obtained by
maximizing the log likelihood of the observed data,

log p {F; 8(u)} = 8(u) - — ¥ {B(w)}.

When the sufficient statistic r = r(s,, sz) includes
hidden part sz, the complete data ¥ is not availatle.
It is one idea to estimate the unknown F based on the
observed s,. If we have a candidate distribution
specified by w, we can use the conditional expectation

i’ = E[r|s,; 0(u)] (61)

to obtain a guess of ¥. This depends on the observed
s, and the candidate distribution @(u’), because the
conditional expectation is taken with respect to the
distribution p{r; 8(u’}}. Then, the log likelihood/
function is estimated by

E[log p(r; u)[s,; O(u')] = 6(u) - #(u') — 9 {6(w)}  (62)

where F(w') is given by eqn (61). The estimated
observed point ¥ or the estimated log likelihood
function (62) depends on the current candidate point
0(w')} € M. We search for a better candidate 8(u) by
maximizing the estimated log likelihood (62), or
equivalently by minimizing the KL divergence
K[#(w')||6(u)] from the guessed data point
M = t(u’) to M with respect to u.

Thus, we have an algorithm of estimating a point u
in M and a point f in D iteratively, to search for the
better candidates. This is the expectation and
maximizing (EM) algorithm, where the conditional
expectation is used to obtain a candidate f(u’) in D
(Figure 8).

The EM algorithm consists of the E-step and the
M-step as follows.

0. Choose an arbitrary initial guess @g. The initial
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FIGURE 8. EM algorithm.

guessed distribution Py € M is given by 0(ug) in
the O-coordinates. Repeat the following for
i=0,1,2,

1. E-step. Based on the candidate probability
distribution P; € M, calculate the conditional
expectation of r under the condition that s, is
observed,

Wy = Elrls,; P. (63)

This gives the ith candidate of the observed point
0, € D, whose y-coordinates are n(,)

2. M-step. Calculate the m.l. €. WG,y from the
estimated observed point Q; € D. This is the
point in M that minimizes K(Qi||P), P€ M or
that maximizes the estimated log likelihood. This
gives the (i+ 1)st candidate P, given by
ﬂ(ﬁ(i+l))~

When the partial observed data cannot be
summarized in the single form = (1/7)Zr,, we
have the data submanifold D% = D| x ... x Dy in
the product space S7. The E-step is to estimate r} by

f‘T:E[r,TlsV,h' Sy T P,]
Because r, is correlated only to s, ,, F, is estimated
separately from s, , in S,, giving

'fl,, i = Elr (s, ; P:] (64)

It is known that the likelihood is increased by one
iteration of the E- and M-steps. Hence, the EM
algorithm converges to the (local) maximum of the
likelihood function of the visible variables where the
hidden variables are eliminated. Hence, it converges
to the (local) maximum of the likelihood equation.
However, this does not necessarily mean that it
converges to the maximum likelihood estimator
iimic, beause it may converge to a local maximum
of the likelihood. It is also pointed out that the EM
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algorithm has a better global convergence property
than the gradient or similar method of maximizing
the log likelihood to obtain the m.le. directly.

5.2. Geometric em Algorithm

Because the true distribution is included in M and the
observed data is in the manifold D, it is natural to
study the problem from the information geometrical
point of view. When a complete data point Q is
observed, the maximum likelihood estimation
searches for the point P € M that is closest to the
observed point Q in the sense of minimizing the
divergence K(Q|| P), P € M. When the observation is
partial, we cannot identify the observed point Q.
Instead, the observed partial information gives a data
submanifold D (or D%). It is natural to search for the
pair of points P € M, 0 € D that minimizes the
divergence between D and M, that is,

K(PI10)= min

,Jmin  K(Q||P). (65)
When the observation is complete, D reduces to the
observed point O so that P is the m.le.

Such dual minimization of K(Q || P) was proposed
by Csiszar and Tusnady (1984) in a general
perspective. Amari et al. (1992), Byrne (1992),
Shimodaira (1993), Neal and Hinton (1994), etc.,
also studied such problems in various fileds.
Information geometry proves that, for a given Q,
the point P € M that minimizes K(Q| P) is given by
the m-projection of Q to M (see Appendix). The m-
projection is given by the m-geodesic connecting P
and Q, which is orthogonal to M at P. In the present
exponential family, a curve is an m-geodesic when it is
linear in m-coordinates. The orthogonality is defined
in terms of the Fisher Riemannian information
metric (see the Appendix).

Dually to the above, for a given P, the point
Q € D that minimizes K(Q| P) is given by the e-
projection of P to D (see the Appendix). The e-
projection is given by the e-geodesic connecting P and
0, which is orthogonal to D to Q. In the present
exponential family, a curve is an e-geodesic when it is
linear in @-coordinates.

From the above considerations, we can formulate
the geometric em-aigorithm (e- and m-projection
algorithm) as follows (Figure 9).

0. Choose an arbitrary initial guess @y, which gives
the initial distribution £y € M. From i = 0, repeat
the following.

1. e-step. e-project f’, to D. This gives Qi € D that
minimizes K(Q|| P,) Qeb.

2. m-step. m-project Qi to M. This gives P;;, that
minimizes K(Q;|| P), P € M.
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FIGURE 9. em algorithm.

When the observed submanifold is D% in S, the
situation 1s the same. Let

Q* =(0, 02,...,0r1)
be a point in D%, where Q, € D,, and let

P = (P, Py,...,Pr)

be a point in M* C §7. Here, the 8-coordinates 0, of
P, is given by

09, = 0(x,, u).

We have from eqn (52)

T

Z K(Q:|| P). (66)

K(Q"|P)

This shows that the point Q* = (01, ..., Q7) that
minimizes K(Q*||P*), Q* € D%, is composed of the
points @, that minimizes K(Q,||P,), Q: € D,. Hence,
the e-projection of P* to D% is given by e-projecting
each component P, to D,. Therefore, the e-projection
can be applied componentwise for each 1.

The EM and em algorithms look quite similar.
The next section is devoted to elucidation of their
relation.

6. INFORMATION GEOMETRY OF EM AND
em ALGORITHMS

6.1. Properties of the e-Projection

The present section elucidates the geometrical
properties of the EM and em algorithms. It is
intriguing to see if the two algorithms are equivalent
or not. The key point is to show the relation between
the e-projection and the conditional expectation. In
the beginning, we study geometrical properties of the

S. Amari

e- and m-projections. It is a well-known fact in
statistics (Amari, 1985) that the m-projection of the
observed point Q gives the m.l.e. We summarize it in
the following theorem.

THeOREM 1. Let Q be the observed point and M be a
statistical model in S. The m-projection of Q to M
gives the m..e. 0(d) € M that maximizes the like-
lihood. The m-projection is unique when M is e-flat.

Properties of the e-projection are shown by the
following theorem.

THEOREM 2. When D is an m-flat submanifold, the e-
projection of P to D is unique. Let D be represented by
the separated form in the m-coordinates,
D ={n|n=(m,, ), m,=H, wisarbitrary}.

Let P be a point whose @-coordinates are similarily
partitioned as 0, = (07, 0F) and Q* be the e-
projection of P to D whose the - and 8-coordinates
are denoted by (w}, m}) and (9}, 0}), respectively.
Then, the following properties hold:

1. The visible part ; of Q* is given by M} =F,.
2. The hidden part ©, of the ©-coordinates of Q* is
kept invariant under the e-projection,

or =9 (67)

3. The conditional probability of the hidden variable ry
at Q* is equal to that at P,
P(rhli',, P) =P(l'h |i.v7 Q‘)' (68)

4. The conditional expectation of the hidden variables
at P is equal to that at Q*,

Ep [l',, ‘i’v] = EQ- [r,,lr",]. (69)

Proof. The property 1. is trivial, because 0* € D. We
first prove that the hidden part of the @-coordinates
0, of O* is equal to the corresponding part 0{ of P.
The divergence K(Q|| P) is rewritten as

wein- s 3]

=Eg[(62 - 0]) -1, + (62 - 07) 1))
—%(0g) + ¥(0p)
=(02-0)) 1, + (67 —0) -mf
—%(8g) +9(8p), (70)

because of Ey[r,] = i, for Q € D. In the submanifold
D, m, is the free variable whereas w, is fixed at the
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value ¥,. Because the e-projection minimizes K (Q|| P),
we have by differentiation

OK(Q||P) 06, _ 08, P
RN _ 2 i OO e+ (0s— 0
anh anh L ( h h)

o,
9y (8g) 29, 07 (8y)

30, om, 06,

because of

0y (0g) .

_ 0y (8g)
aov =", =", 80;. = Ny (71)

The right-hand side of eqn (70) vanishes at the
minimum point Q*, so that eqn (67) holds.

The conditional distribution of r;, at P conditioned
onr, = i, is written as

N p(rn, Fy; 0p)
r rV) G e
p(ra|Fy, 0p) (6 07)
B exp{0F -, + 0F -1, — v}
[ exp{07 &, +0F - v, — ¥}du(r,)
= exp{6] -1, ~ ¥},

where the normalization factor ¥ depends on 8/ and
7, but not on 0F. Hence, the conditional expectation
of r; does not depend on Of . Therefore, because P
and its e-projection Q* have the same 0;-coordinates,
the conditional probabilities are equal at P and at Q*,
and hence

Ep[nnli] = Eo /). W (72)

6.2. Geometry of the EM Algorithm

Theorem 1 shows that the M-step and m-step are the
same procedure giving the m.le. i. How are the E-
and e-steps? To obtain a geometrical interpretation of
the E-step, we define the following transformation
F: S — S. Let the ncoordinates of Q be divided as

(nva 71}.) We put

SQ(]‘V) = EQ [l‘;,ll'v], (73)

where Ej is the conditional expectation at Q. This is a
function of r, and Q = (m,, m,). Let F be a mapping
that maps a point 0 : (n,, M) to Q': (n,, sg(m,)),

F: (m,, ny)—(m,, sp(m,)) (74)

That is, F keeps m, invariant and replaces the m,
(which is the unconditional expectation of r, at Q) by
the conditional expectation of r, conditioned on
r, =7, (which is the expectation of r, at Q). When D
is defined by fixing m, = ¥,, F maps D to itself.
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The E-step is interpreted as follows. Let P be a
candidate point in M. The E-step gives the point
0 € D whose 1), part is equal to the observed ¥, and
v, part is given by the conditional expectation
E, [ra|r, =1,] of the hidden r; at P. The conditional
expectation at P is the same as that at the e-projected
Q* of P, because the conditional expectation is kept
invariant under the e-projection (Theorem 2). Hence,
the E-step implies to e-project P to D obtaining O*
and then transform Q* to FQ = by replacing the n} of
Q" by the conditional expectation of r, at Q*. So the
E-step is rewritten as E-step: e-project P; to D to
obtain @], and then transform it by F to give
0= FQ?. This also gives the following alternative
description of the EM algorithm.

THEOREM 3. The EM algorithm is formulated in the
Sfollowing dual minimization steps.

1. E-step. Search for the point Q; € D that minimizes
K{F(Q)|| P}, 0 € D. A

2. M-step. Search for the point Py € M that
minimizes K(Q;|| P), P € M.

It is clear that, when Fis the identity, the EM and
em algorithms are the same. This holds when the
conditional expectation of r; conditioned on ¥, at
Q € D is equal to the unconditional expectation of ry,
at Qe D.

THEOREM 4. The EM and em algorithms are equivalent
iff. the conditional expectation so(r,) = Eg[rs|r,] is

linear inrx, at any Q € S.
Proof. At Q = (m,, m;) € D, we have

W = Egra] = Eg Ep[ra|n] = Egsp(r,),
Tlv = EQ [r\’]‘

When sg (r,) is a linear function, it is written as
sg (r,) =a+ Br, (75)

for a constant a and a constant matrix B. We then
have

ny = Eg[se ()] = so (Ep(r.)) = so(m,)-

Hence, F is the identity and the two algorithms are
equivalent. On the contrary, we assume that F is the
identity, so that

M, = Eglso (r,)] = s [Eg(r,)] (76)

holds for any point Q € S. Let @ = {q(r,, r4)} be an
arbitrary distribution belonging to Dy defined by
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m,=m,, Let P={p(r,, r)} be an arbitrary
distribution such that its e-projection to Dy is equal
to Q. Let @y, 0 <t < 1, be the family of distributions
on the e-geodesic connecting P and Q, where Qp = Q
and Q) = P. The family Q, is an exponential family in
S, and all the Q; have the same conditional
distribution g(ry|r,) because the e-projection of Q,
is Q. Hence, the distribution Q, = {q:(ry, rs)} is
decomposed as

q:(ry, 1) = p(r,; Dg(min). (1)

Because sp(r,) depends on Q only through its
conditional distribution, we have

s (r,) =sg(r).

Hence, eqn (76) implies that
J so(r,)p(r,; t)dr, =sg “ rP(r,, t)drv]. (78)
We can choose any P under the condition that
Jp(rv; tdr, = 1.

Therefore, eqn (78) immediately shows that sg (r,) is
a linear function of r, asineqn (75). W

6.3. An Example Where the EM and em Algorithms
are Different

As will be shown in the next section, the two
algorithms are equivalent in most important cases.
Here, we show a simple example in which the two
algorithms are different.

Example 10. The normal multiplication model
(Example 8 continued). We first treat the case of
T =2 for simplicity’s sake and search for the
mapping F. Let Q = N(7, 02) be a point in D. When

1
==X +x)=F

2

is observed, the conditional probability distribution
po(x|7), t=1,2, is given as follows. The joint
conditional distribution conditioned on
(x1+x2)/2=Fis

202

_\2 .
Po(x1, x2|F) =c(F) e.xp{_(xl —F)" +(x2—F) }

x6(—x1 ';)Q_;)’

S. Amari

where ¢(F) is the normalization constant. By
integrating this with respect to x;, we have

po(xil?) =cexp{—‘£i’f}.

o?

Thus, when we know F, the variance of x; reduces to
02/2. Obviously, x, has the same conditional
distribution, although x; and x; are not condition-
ally independent. Hence, the conditional expectation
of x2 is

2, 7 §

Eolx}|F) =7+
So the conditional expectation of r; conditioned on
r, = 7 is given by

2

2| _ 22,9
r]—r+2.

B x2 + x2
5o (F) = Eg ['—2—2

This is different from the unconditional expectation

at Q0

x2 4 x2
-1 -2 2] = 402

77h=EQ[

This shows that F is not the identity and it maps
Q=N 0% to

2
FQ:N(F, f2+57—2—).

The e-projection Q* of a point P = N(u, u?) € M
to D is given as follows. Because the @-coordinates of
a point N(u, o2) is given by

2 1
av = ;1 eh = ﬁ
when 7 =2, and because 6* =8 = —u~2 and
7, = F, we have
Q' = N(F, u?).

On the other hand, the E-step from the candidate

P e M gives
2
Q=N(f, "—),

because

2
E,[r;,|r,=F]=F2+u7.
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FIGURE 10. Example where EM and em algorithms are different.

F

m.le.

This is confirmed from

In t{le present problem, M and D intersect at a
point P* = N(r, 7%) at which K(D| P*) = 0 (Figure
10). Hence the em algorithm converges to

from the geometrical point of view. On the other
hand, the EM algorithm converges to the m.le. 4,

a=(V3-1)F=0.73%.

Here, K(D|| P) is not the minimum of K(D||M).
For general T > 2, we have, for Q* = N(F, u?),

FQ* = N(F, T—;l uz).

The solution of the em algorithm is

whereas the EM algorithm gives
ﬁ:l(\/Tz +4T-T)r~ (1 AP
2 T)

Therefore, when T is large, 4*=# and the em
algorithm and the EM algorithm are asymptotically
equivalent. The asymptotic equivalence holds in
general, so that we do not need to be bothered by
their difference practically.
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7. THE EQUIVALENCE OF THE EM AND em
ALGORITHMS IN EXTENDED FRAMEWORK

7.1. Which is More Natural, the EM or em?

When F is not the identity, the EM and em
algorithms are different, giving different estimates @.
Which is more natural and which is better? Because
the EM algorithm gives the m.l.e., and because it is
known that the bias-corrected m.l.e. is higher-order
efficient (Amari, 1985), the EM algorithm might look
more natural from the statistical point of view.
However, when we use a neural network model to
approximate a given input—output relation, it is not
statistical inference. The problem is to realize a neural
network that approximates a given input-output
behavior as faithfully as possible. The behavior is
presented by examples and is summarized in the data
submanifold D. Any point in D can equally explain
the input—output data and their difference lies only in
the hidden variables, which we do not care about.
Therefore, the em algorithm that minimizes the
divergence K(D|| M) seems to give a more natural
answer.

However, we show that the two algorithms are
equivalent if we extend our framework from the
exponential family to the function space. Even in the
framework of the exponential family, they are proved
to be asymptotically equivalent when T is large.
When they are equivalent, the E-step of taking the
conditional expectation may be computationally
more tractable than the e-projection.

7.2. Linearization Trick Guaranteeing the Equivalence
of the EM and em Algorithms

The two algorithms are equivalent when sp(rs) is
linear. We show that it is linear in the extended
framework. Let y be a random variable taking on the
values 0 and 1. Then, any function f{y) is linear in y,
because we have

Sy) ={/(1) - £(0)} y + £(0). (79)
This trick can be used for any function f(r), provided
the variable r takes its value on a finite set K. Let m be
an element of K, and we introduce a new vector

variable k(r) indexed by m,
k(r) = {ku(r), m € K} (80)

by

ku(r) =6(r —m). (81)

Then, any function f(r) is linear in the extended
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random variable k(r), because

S0 =3 fm)kalr) (82)

This shows that, when the visible random variable
is binary, or when the visible random variable is
represented in the extended vector form
k(r) = {km(r)}, the conditional expectation is linear
in the visible variable k(r) and the EM and em
algorithms are equivalent. Indeed, the EM and em
algorithms are equivalent in the binary stochastic
perceptron, the mixture of expert nets, the Boltzmann
machine, and the normal mixture model.

The linearization trick still works in the contin-
uous variable case because we have

fir) = jf(m)a(r ~ m)dm, (83)

In this case, the random variable r is extended to the
random (generalized) function

Su(r) = 6(r — m),

which is an element of the generalized function space.
When T examples ry,...,rr are observed, they are
summarized in the empirical distribution,

T
Pemp(F) :lT > s(r—r). (84)

Now we formulate the hidden variable problem in
the function space, and prove that the EM and em
algorithms are equivalent in the function space. Such
a formulation is obtained by Cssiszar and Tusnady
(1984), Shimodaira (1993), and Neal and Hinton
(1993). Let S= {p(r,, rs)} be the function space of
all the density functions of random variables
r = (r,, 1), where r, is visible but r, is hidden. Let

M = {p(r,, s u)} (85)
be parametric model specified by parameter u. When

r;, r= (rv,1,-..,0, 1) is observed, we can summarize
it in the function space as

T
ﬁﬂﬂp(rv) =%—v Z 6(]’, - rv,t)- (86)

This is the empirical distribution based on the
observed data. Let us decompose p(r,, r) as

p(r, 1) =p(r,)p(mir,). (87)

When r,’s are observed, p(r,) is given by the
empirical distribution but p(r,|r,) remains free.

S. Amari

Hence, the observed data submanifold D consists of
the functions

D = { pemp(r,) p(ra{rs)} (88)

in the function space, where pemp is observed but
p(sy|r,) are free functions. The e-projection of
P=p(r,rp;u) to D is the one that minimizes
K[q(ry, ta) || p(xy, 1a; W)}, g(ry, r) € D. The structure
is transparent if we show that the e-projection Q* is
given by

q"(£v, Tn) = Pemp(F) P (T4 | 1y; 0) (89)

when T =1, and by

T

T
H q‘(rv, 2 rh,t) = H ﬁemp(rv, :)P(l'h, 2] “)>
t=1

=1

for general 7. On the other hand, by extending the
hidden random variable to the function é(r;, — m), its
conditional expectation is

E{6(rs — m)|r; u] = j 5(ry — m)p (m|r,; u)dm
= p(rh | Iy “), (90)
giving the conditional probability at u. Hence, the

two algorithms are the same, as is shown by Csiszar
and Tusnady (1985) and Neal and Hinton (1993).

THEOREM 5. The EM and em algorithms are equivalent
in the function space. The E or e-step is

E (e)-step. Obtain the conditional probability

p(l’hll'v; ﬁ(i))'
M m-step. Maximize

Egi[log p(rs|r,; w)]

T
= Z JP (rh, el 5 lA'(i)) log p(ry, .|y, ;s w)dry .,  (91)
=1

with respect to u, which gives W, ).

The structure is transparent if we consider in the
function space. However, we need to keep all the data
Iy 1,...,Ty, 7 Wwithout summarizing them into a
sufficient statistics.

7.3. Analog Stochastic Perceptron — an Example

Not all the neural models are exponential or curved
exponential families. We show this by using an
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analog stochastic perceptron (see Amari, 1991). Let x
be an input, z be the output of hidden units, and y be
the final output. Let f be an analog sigmoidal
function, for example,

1

A P

The output of the ith hidden unit is

zi=f(wi-x) +n (92)
and the final output is

y=f(v-z)+n, (93)

where n; and n are independent normal random
noises subject to N(0, o). We then have

p(zix; u) = c exp [—5;—2 > {zi—f(WrX)}z} (94)

pOlme = e -5z r-f0-oF] 09)

Hence, the logarithm of the joint conditional
probability distribution is written as

oy, 2l u) =D zf(wi- %)+ yf(v-2) - H{f(v- )Y
+h(y, z) - (96)

This cannot be summarized in the form of 0 .r, a
bilinear form in an extended random variable r and a
function 8(u, x) of parameters. Hence, the distribu-
tions p(y, z|x;u) do not belong to a curved
exponential family. However, it is possible to
generalize the information geometry to be respon-
sible for such cases by introducing the manifold of
functions. The information geometry and the EM
algorithm are also applicable to this case (Csiszar and
Tusnady, 1984).

It should also be remarked that a stochastic
perceptron reduces to the ordinary analog percep-
tron if the stochastic outputs z; and y are replaced by
their expected values. Hence, an ordinary multilayer
perceptron can be trained by the stochastic method in
the training phase.

The EM algorithm works as follows.

E-step. Calculate the conditional distribution of z,
based on observation (y, Xx,) at time ¢. This is given
by
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Py, %o, )
exp {—r:_z‘ (lz: — £, |2 +{y =S¥ 'zt)}Z]}
oo {5z 2=t + 32 = 120

where f, = (fi,,,. .-, Jk. 1)
fj,t :f(Wj'X:)-

M-step. Calculate the u that maximizes

S [ iy 5., 6) log p(ailyn %, w)d

4

and put it as @;,;. This process converges to the
maximum likelihood estimate. The learning version
of this procedure is also easily given. However, it is
not clear how good is the m.lL.e. We compare the
behavior of i, Wwith the back-prop solution in the
special case where o2 is very small.

In the case of the analog multilayer perceptron, the
conventional back-propagation learning rule is
designed to minimize the empirical error

T

=3 5 e w, o7)

t=1

where y, is the specified output and f(x,; w) is the
output from the network with parameter u. In the
present analog stochastic perceptron, f(x,; u) is given
in the execution mode by the expected value of the
output, so that the output

7xi w) = {3 st %)}

is the same as the deterministic one. On the other
hand, the paramter u is modified to maximize the
likelihood function of examples in the learning mode.
It is in general difficult to write down the likelihood
function explicitly and compare it with the square
loss (97). We calculate here the likelihood function
when the noise o is very small, to show the difference
between the conventional least square loss and the
statistical loss given from the stochastic perceptron.

Because the joint probability of y and z is given
from eqns (94) and (95) as

r(y, z)x)

~con{- 553 [ - sm 0P + (s 2y |

we have the conditional probability of y by
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integrating the above with respect to z. By using
n = (n;) in eqn (94) and putting n’ = 0 ~'n, we have

p(yIx)
12
= cfew{ -8~ br-stv- om0 + ow

where
v-f(wi-x) = Z vif ((wi - x).

When o is small, we expand
B x) +on')] = f4of von' 45 0% v WY,
where
7=1{3 wrw-%} = fix; w)

is the output of the network without noise and the
prime is differentiation. We finally obtain

—logp(ixw) =3 G- {1+ 3o e o9

Therefore, the stochastic perceptron is expected to
minimize the loss

1 1
o) = Y3 0~ f s {1 43 07200} 09)
=1
This shows that the factor
1 +l a2f/2v2
2

is multiplied to the ordinary squared error. This is
very reasonable because it automatically has the
effect of decreasing loss at the range where f(x; x) is
almost saturated. Learning of the stochastic percep-
tron is shown to give a good performance by a
preliminary computer simulation. This is also related
to the recent finding of the enhanced performance of
the multilayer performance with noise (Murray &
Edwards, 1994).

8. LEARNING PROCEDURES

We can rewrite the EM or em algorithm in the on-line
learning form when a partial observationr, , or s, , is
available one at each time ¢, while the batch
algorithm uses all the data r, ,, t=1,...,T stored
together. In general, the convergence might be slower
but the algorithm is much simpler in learning.

S. Amari

Moreover, learning is robust against any changes in
the environmental structures.

We propose the following learning algorithm when
all the data are summarized in a single observed point
%) in S. The algorithm is essentially the same as that of
Neal and Hinton (1993) and Jordan and Jacob
(1993). The algorithm is applicable to the stochastic
perceptron. Let i, be the estimator at time ¢, and let
T, be the guess of the observed point at time ¢. Given
a partial observation s, ;1 at time ¢ + 1, the learning
procedure is as follows.

1. e-step (E-step). Calculate the e-projection of the
present P, to Dy, (the conditional expectation of
f;+1 conditioned on s, ;4 ; based on @;). This gives
a guess of the unobserved f,, |. Then, modify the
guess of the observed point by

Npy = (1 ~ €)W, + Efi, (100)

where ¢, is a constant or a decreasing sequence
such as g, ~ ¢/t.

2. M-step. Calculate the m.l.e. from #,,, and put it
as 0,41 which gives P

Because calculation of the m.le. is usually not easy,
we can use the gradient method to obtain the next
8.+1. The log likelihood for #,,, is

I=0() -, —¢(u),
and its gradient is

= B{(h.: ~ ()}, (101)

where

o0
B= 7
is a matrix. Hence, the gradient method applied to the
incremental M-step is
2’. incremental M-step

b, = i +&B{#,,, —n(d)}.

Any acceleration method is applicable to the above.
The scoring method gives

i =0+ EtG:B{ﬁhH - n(ﬁl)}

where G7 is the inverse of the Fisher information
matrix of M at i,.

When the observed data cannot be summarized
into a single § so that we need to consider the
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product space 87, we propose the following learning
algorithm.

1. e-step (E-step). Calculate the e-projection of P,
whose 0-coordinates are 0(x,.;, il,) to D,y; (the
conditional expectation of r.;). This gives a
guessed F,y.

2. Incremental M-step

U, =0, + 6B(X{+1,ﬁr){it+l - n (@, X,)}.
In this case, the log likelihood is written as

/= Z {O(X,, ll) - w(xn “)}

In the e-step, we guess ¥, from the observed variable
Sy, 1+1 and x,41 based on i,. In the incremental M-
step, we use only the newest data f,,; to calculate the
gradient, where old data r,. .., ¥, may be discarded.

Example 11. Learning of the stochastic perceptron.
The EM and em algorithms are the same in this case.
The E(e)-step works as follows. The conditional
expectation conditioned on the observed y,,, is

F2.x = E[6x(z)] = Prob{z = k|y..,, u;}
__ P kvl (k, x - w;0)
Zk @ (Y, k- v Ly (k, x-w; )
Y1 =0

0,
f],k={A (102)
2,k Vel = 1.

In the learning phase, only current f,,, is evaluated
by the above conditional expectation. In the batch
processing, old F, is also modified based on &, which
was renewed from u,,,. We can use the incremental
algorithm by calculating the gradient of ¢ with respect
to u.

The M-step is calculation of the m..e. The
incremental algorithm uses the gradient of

I=1log p=0(u) r—4{B(u)}

We can calculate §//0u by using eqn (16), giving

=Y Aaly ol kWi,
k

al X exp(W; - x)

dw, ; 8 (k)7 ix 1 + exp(w; - x)’

The new u,, is given by

ol
on’

W =W +g
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IMPORTANT REMARK 1. When examples are generated
by a noiseless (deterministic) network with y =0 or 1,
all of |w;| and |v| diverge to infinity by learning. In
such a case, we need to control their magnitude
carefully by normalization. Then, learning works in
such a case.

IMPORTANT REMARK 2. When an analog input—
output relation y = f(x) is learned by using the
stochastic perceptron with y = 0, 1 output, the values
of 7, in the examples (¥, x1),...,(J7, Xr) are not
binary but real. In such a case j, is interpreted that,
when x, is input, 7, is the probability of y, = 1. In
other words, when x, is input in many times, y, =1
occurs with relative frequency y,. The conditional
expectations are given by

Fie = Pt E[Bx(2) |y = 1, uy,
Fokx = )71+|E[6k(z)|J’r+l =1, ut]
+ (1 = Fis1) E[bx(Z) |yt = 0, uy]. (103)

9. DIFFERENTIAL AND INCREMENTAL
FORMS OF THE EM ALGORITHM

From the geometrical point of view, the EM and em
algorithms search for the (local) minimum of the
divergence from D to M,

K(D|M)= min K(Q|P),

or

K'(DIM) = min  K{F'(©Q)IP},

where 0 moves in D and P moves in M. Therefore,
we can associate dual gradient flows in D and in M of
the single function K(Q||P) or K[F~Y(Q)| P]. Let
Q € D and P € M be a pair of points that move in the
directions of decreasing K(Q || P), respectively. Then,
we have the dual gradient flows Q(7) and P(7)
(Figure 11). Let u(f) be the parameter to specify a
point P € M whose 0-coordinates are 8, = 0(u(r))
and let ng(f) = (ng,,» Mg, ») be the coordinates of
Q € D so that the observed part is restricted to
Mg, =T, where ¢ is the parameter of the dual
gradient curves. The gradient flows are given in these
coordinates by

d 0

7 u(t) = —€Gy aK('Ig l6-), (104)
d . 0
a "lQ,h(’) = &Gy m K("lg””?)- (]05)

Here Gy and Gp are the Fisher information matrices
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FIGURE 11. Dual gradient flows.

of M and D, respectively. It is easy to prove the
relations

0
a—opK(Q”P):'Ir“'IQ,
o
— K P) =0, — 0p.
B“Q (Q“ ) Q P

Hence, the gradient flows are written as

3 u) = ~<63 2 tm, () - mofutepy,  (106)

2 g a(1) = ~G5' {9, h(u(0) ~ 0,48,4(1)}, (107

where 8p and mg, are 8- and n-coordinates of P and
Q, respectively. The flows are e-and m-geodesic flows
in D and M, respectively (Fujiwara & Amari, 1995).

By discretizing the above geodesic flows and
neglecting the metric tensor terms G~!, we have the
following incremental algorithm: For 1 = 1,2,3,..

t

b =8 - 30 (@) (109
f]h,t+l = ﬂh,l - E’r{oh(ﬁ!) - 9;,(';],)}, (109)

10. EXAMPLES — NORMAL MIXTURE,
RADIAL BASIS EXPANSION AND MIXTURE
OF EXPERT NETS

Here we give two important examples, briefly, to
show the applicability of the stochastic method. More
detailed studies are necessary for these example as
well as the stochastic perceptron. Hidden Markov
models (higher-order), Boltzmann machines, and
Boltzmann machines with asymmetric connections
are also good examples to be treated in the
framework (see Amari et al., 1992; Ito, Amari, &
Kobayashi, 1992).

S. Amari

10.1. Normal Mixture and Radial Basis Function

The normal mixture model (see Example 3) has been
studied by Neal and Hinton (1993) from the point of
view of the EM algorithm. We study the problem
from the point of view of information geometry. The
problem is originally concerned with the density
estimation or approximation, but the same technique
is applicable to the radial basis type function
approximation where desired output signals are
provided from a teacher. We have shown in eqn (8)
that the normal mixture with hidden variable z is an
exponential family. Here the parameters of the model
are summarized as
U= (P, Pk} 0y -y Bk OyevnyT0).

Hence, we have @ = O(u), and this belongs to a
curved exponential family M. Let us consider the case
of repeated observations. Let ry,...,ry be T
independent i.i.d. data. They are summarized in f,

i1 =% Zx” 712=%, Zx‘z,
in=% > 6i(z),

T3 =—;—, Z x,6:(z,),

Fai =‘17: Z xf&,—(z,),

(110)

where r, is a function of the tth observation (x,, z,),
t=1,...,T

The m-coordinates of S are given in terms of u by
the expectation of r, which is the same as that of T,

7 = n(u),

k k
n =Zl’i#x‘, n|z=Zp:(u?+0?),
i=0 i=0

N2 = Pi, (111)

N3 = Pi ki,
n4i = pi(p} +o?).

The M is given by 7 = n(u) in the m-coordinates.
Because S is an exponential family, when all the data
(x;, z;) are observed, the observed point is given by
M =rin S. The m.le. i is given by projecting % to M.
This is obtained by solving

f=n(ﬁ)v
where u= (p;, i, 02), i=0,...,k. The mle. &

minimizes K[f||w(u)].
When the hidden variables z, are not observed, we
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cannot summarize r,(t = 1,...,T) into a single F. We
need to treat the product space S = S1 x --- x Sr.
Partial observation then defines a data submanifold
D,, and hence D% = D; x --- x Dr. We show this by
using a simpler case of o9 = o; = 1. The general case
can be analyzed quite similarily. In this special case,
the log likelihood is written as

i 8:(2) {log P —% (u? - u%)}

log p(x; pi, 1) =pox + —
Po

i=1
k

+ Y x6i(2) (i — po)
i=l

flogpo—tu- X (12
08 P~ 5 Ho " 5 )

Therefore, this is a full (not curved) exponential
family, that is M = S, where the random vanable
r = (ro, r1;, r2), the @-coordinates and the m-coordi-
nates are given, respectively, by
ri = 6:(z),

rg = x, ry = x8(z), (113)

1
0 = po, O =log (pi/po) — 2 (pl—pd), 6u=pi—po
(114)

k
Moo= Piktis Mi=Pi Nu=pip, (i=1,.. k).
i=0

(115)

When x, is observed but z, is not at time ¢, s, = x,
and s, = {6;(z,)}, and the observed data submanifold
D, is given by

Dy = {0 = xi, N = ai, N2 = X0} (116)

where q; are the free parameters corresponding to the
unobserved 6;(z,). It should be noted that §;(z,) is 0
or 1 but «; takes any real values satisfying 0 < o,
Y a; < 1. The D, is a linear submanifold in m, but it
depends on x,. Hence, D, is different for each 1, so
that we cannot summarize them into a single
submanifold D but we need to treat the product
D*%. The model M7 is simply given by 0, = 6. Hence,
M7 is a submanifold of S7.

Now we discuss the E-step. For a candidate point
P € M, the conditional expectation of the missing
variable 8;(z,) is calculated as

ai(x) = E;[8:(z) | x]
_ Pi exp{—% (x — ﬁi)z}
d_piexp {—} (x~ )"}

(117)
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This is the same as Ep[6;(z;)|x,], where Q is the
e-projection of P to D,. It is easy to show that the
e-projection gives the same answer.

We can write down the learning or incremental
form of the EM algorithm. This can easily be
generalized to the multidimensional normal mixture,

k 1
p(x, z;u)= 'Z:; 8:(z) pi _—_—(\/27)"1 > ll/z

x exp{—1 (x— )’ ;" (x—m)},

where u consists of p;, p;, and X;.

The probability p (x; u) looks like the radial basis
expansion of the density function. The radial basis
expansion is used to approximate a function y = f(x)
in the expanded form

S~ (—@1‘—2—{7

x exp{—é (x—m)’ Zl (x—ui)}.

When f(x) > 0 for all x in a domain R and
| ro0ax =1,

we can interpret y as the probability density of x,
which is unknown. When (x,, y,) is observed but z is
not, we interpret that x, is observed a number of
times proportional to the teacher signal y,. When x is
uniformly distributed over R, we can use the EM
algorithm for supervised learning of y = f(x). When
x is not uniform but has an unknown density ¢g(x),
we estimate g(x) by another network. The result of
the former network gives an approximation to
f(x)/q(x), so that we can calculate an approxima-
tion to f(x).

10.2. Mixture of Expert Neural Nets

A simplest case of mixtures of expert nets (Jacobs et
al., 1991; Jordan & Jacobs, 1994) is presented here.
There are various generalizations, including the
hierarchical mixture (Jordan and Jacobs, 1994; Xu
et al., 1994). Another generalization will be shown in
the end of this section. Let N;(i =0, 1,...,k) be
k + 1 stochastic neural networks called experts,
receiving a common input X and emitting a binary
output y;. In the present simplest case, we assume
that &, is a simple stochastic neuron such that it emits
a binary output y; depending on the weighted sum
u;=w;-x of the input x (Amari, 1991). The
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FIGURE 12. Mixture of expert nets.

probability of y; given x is written as

p(yilx, w) = (yi, wi-x)
=exp{yix-w;—¥(w;-x)}, (118)

The mixture of experts is composed of k + 1 expert
networks N; with a gating network N that selects one
of the expert nets for processing input x. It receives
the same input x and its output z is a random variable
taking values on {0, 1,...,k}. When the output of the
gating network is z = i, the gating network decides
that the signal x should be processed by network N;.
Hence, the final output y is equal to y; in this case
(Figure 12). In general, the output y is written as

§i(z) yi.

k
y =
i=0

The output z of the gating network is determined
stochastically by the softmax function
. exp(v; - X)
g =p=ilx) =220 X_ ()9
Z exp{v; - x}

j=0

where v; is the connection weight vector of the ith
gating output. Without loss of generality, we may put
vo = 0, because g; is invariant under the transforma-
tionyy —»vi—aforanyaandj=0,... kL

The joint probability of (y, z) is

k
p(y, z|x) =exp {E 6 (2)(vi - x — i + o)
i=1

5> Y‘Si(z)(wi—wo)'X‘F}"'o'X—'/’},
- (120)
where
¥ = log{l + exp(w; - x)}, (121)

K
Y= log{l + Zexp(vj - x)} + . (122)

j=1

S. Amari
By putting
n=y,
ry=6;(2)y, (123)
= 6!' (Z)y
6, = wp - X,
B2 = (Wi — Wo) - X, (124)
03 = vi - X — ¢ + 1o,
we have
Py, z|x) = exp{® -1 - ¢}. (125)

Therefore, the family {p(y, z|x)} of the conditional
distributions of the mixtures of experts is an
exponential family, where 8 = 0(x).

We have shown the simplest case where N; is a
binary stochastic neuron. Jacobs et al. (1991) and
Jordan and Jacobs (1994) treated a more general case
that the conditional distribution of the output y; of N;
belongs to a general exponential family, for example,

p(yilx, w;) = exp{0(w; - x)yi + k — ¢ (6)}. (126)
The binary neuron case (17) is given by putting

O(w;-x) =w, X,

¥ = log{1 + exp(w; - x)}.

Another typical example of N; is an analog stochastic
neuron where the output y; is written as

Vi :f(wi-x)+n, (127)

where fis the sigmoidal function and » is a random
noise subject to N(0, o2). In this case

1
0=;f(w,--x)
2
=Y
k-202’

¥ =5z /(W) +log(VEn0).

The joint probability of the mixture of general N;
of eqn (126) is again written as

Py, z|x) = exp{z Biirij — Tﬁ}a
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where r is the same as eqn (123) and

0 = 8(wp - x),
6 = O(w; - x) — O(wo - X), (128)
03 = vi - x — Y {6(wi - x)} + ¥ {0(wo - x)}.

The conditional probability of the total net is again
an exponential family.

The mixture of experts is of stochastic model. It
can be trained from examples based on stochastic
techniques. However, it can be used deterministically
in the execution mode. In this case, an expert N; emits
the expectation E[y;] of the stochastic y;, and the
gating network gives weights

g = E[6:(z)] = Prob{z = z;}

such that the final output y is the weighted sum,
k
=3 syl
i=0

It is also possible that the gating network N plays the
winner-take-all rule, choosing one candidate network
N; that has the largest probability of z = i.

It is important that the mixtures of exponential
family expert nets are again an exponential family.
Jordan and Jacobs (1994) showed that a hierarchical
mixture can be successively constructed by using
mixtures of expert nets as component expert nets.
This is again an exponential family, so that a higher-
order hierarchical mixture is constructed in this
manner. We show one hierarchical step. Let N7},
i=0,...,m, be (m+1) mixtures of experts nets,
consisting of k; + 1 expert nets N;, (j=0,...,k).
Let z; be the output of the gating network of N7. We
then construct a mixture of N}’s where z* is the
variable of the total gating network. When z* = i, the
mixture N} is selected, and then a network N, ; is
selected from N} when z; = j. Thus, the final output y
is equal to the output y; ; of N; ;. Hence, we have

y= Z 8:(z7)6;(z)) i - (129)

This shows that the hierarchical structure is used
to generalize the gating mechanism, one of N; ; being
selected hierarchically depending on x. Xu et al
(1994) proposed a different gating mechanism that is
computationally tractable.

We propose another gating mechanism. Let
Ny, ...,Ni be component expert nets. We denote
them by N,, £ =0,...,k. The variable z of gating
network takes values on the set 4 ={0,1,...,m},
where m > k. Now the set A is partitioned into k + 1
subsets,

1403

A={l, §,..., k}
such that I ={0,1,...,i}, 5L =
{io+1,...,i0+101},.... When z takes its value in

I, p=0,1,...,k, that is, z € I,, the component
network N, is selected, so that

K
=23 8:.(2) (130)
p=0

where 67 (z) = 1 when z € 1, and is otherwise 0.

This is again an exponential family, because the
conditional distribution of (y, z) is obtained, in a
similar way as eqn (20), by

m

p(y, z|x) =exp {Z = 6:(z)(vi - X — ito)

L

k
+ 3 you(R)(w, - wo) - X+ ywo - X — 11)}-
p=1

The statistics r is

n=y,
r.=86,(z), p=1,... .k
ri=6i(z), i=1,...,m

in this case and 0 is similar to eqn (124) where 6,; is
replaced by 63,.

The above grating net has no hierarchical structure
but is very simple and flexible. We explain this by
using the deterministic limit where softmax function
is replaced by the max function or the winner-take-all
mechanism. A gating network with the maximum
selector divides the set X = {x} of input signals into
subregions X;

x=Jx. (131)

A signal x is processed by N; when x € X;. It is
known that gating network realizes a Laguerre-
Voronoi division (Zhuang & Amari, 1993), which is
a little more general than the Voronoi division. The
hierarchical mixture divides each region further into
Laguerre—Voronoi subregions

xi=J X, (132)

depending on the values of z;. When x belongs to X; ;,
it is processed by N; ;. Thus, the hierarchical structure
is capable of forming a more complex division than
the simple Laguerre-Voronoi one, although each X ;
is still convex.

On the other hand, the proposed net divides X into
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m+ 1 Laguerre-Voronoi regions X;, whereas the
region X, on which signals are processed by N,
consists of unions of the corresponding subregions

x,=Jx. (133)

J€l,

Each X 5 can be nonconvex in this case, and it is
universal in the sense that any division can be
approximated by this method if m is sufficiently
large. Hence, this gating network realizes a more
flexible and complex division in a simple manner.

We can write down the EM and em algorithm and
the incremental or learning version explicitly.

11. CONCLUSIONS

The information geometry of the EM algorithm and
the em algorithm is constructed. It is proved that they
are equivalent in most practical cases, and are
equivalent asymptotically and also in the extended
function space. Thus, a unified geometrical frame-
work is given to the EM and em algorithms. This
makes it possible to formulate a learning version of
the EM algorithm. The stochastic multilayer percep-
tron, normal mixture models, and mixture of experts
are treated as examples. This framework opens a new
area of research connecting neural networks, statis-
tics, and geometry.
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APPENDIX: INFORMATION GEOMETRY

A.l. Dual Geometry of Exponential Family

Invariant geometrical structures of a general manifold S of
probability distributions have been studied in detail (Aman,
1985; Murray & Rice, 1993, etc.) to obtain intrinsic properties of
a statistical model. The geometrical theory has successfully been
applied to various fields of information sciences such as statistics
(Amari, 1985; Kass, 1989), systems theory (Amari, 1987a; Ohara &
Amari, 1992), information theory (Amari & Han, 1989; Amari,
1989), neural networks (Amari, 1991; Amari et al. 1992), and many
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others. Mathematicians are studying this new geometrical structure
of differential geometry (Nomizu & Simon, 1991; Kurose, 1990). It
is a Riemannian manifold equipped with a couple of dual affine
connections. The duality in affine connections is a new notion
introduced in differential geometry originated from information
science. However, we do not mention the differential geometrical
concepts such as the Riemannian metric, affine connection,
curvature, etc.,, in detail. Instead, we show two types of
straightness of a curve (geodesic) in a dually flat manifold. The
orthogonality of two curves is also shown intuitively. We then show
fundamental theorems on a dually flat manifold. Readers are asked
to refer to Amari (1985), Murray and Rice (1993), and related
works.

Here we explain the exponential straightness (geodesic) and
mixture straightness (geodesic) in an intuitive way. See Section A.4
for a more formal definition based on the covariant derivative and
affine connection. We first treat the manifold S of discrete
probabilities of Example 2, where x takes on {0,1,...,n}. A
probability distribution in § is denoted by p(x) or p = (p;), where
pi; = Prob{x = i}. For two probability distributions p,(x) and
P2 x), there are two special curves connecting them in the manifold
S. When we connect log py(x) and log p,{x) linearly, we have the
exponential family {p(x; 1)} given by

log p(x; £) = (1 — t)log p1(x) + 1 log pa2(x) — ¥ (1) (A1)
or
p(x; 1) = exp{tr(x) +log pi(x) - $(1)},
where

_ . px)
r(x) =log ﬁ(x—)

is a new random variable, 1 (z) is the normalization factor, and
0 < 1 < 1 is the parameter of the curve. This curve is regarded as a
“straight line” (geodesic) connecting p, (x) and p,(x) in S from the
exponential family standpoint. In terms of the 8-coordinate system,
the coordinates (1) of p(x, ¢) are written as

0(1) = (1 — )0, + 10, = 0, + 1(0, — 0,), (A2)

where 0, and O, are the O-coordinates of p,(x) and p,(x),
respectively. Therefore, the exponential geodesic is a linear curve
in the @-coordinates.

The other is the mixture family {p"(x, )} connecting the two
distnibutions by the curve

P (x, ) = (1~ Npi(x) + tpa(x). (A3)

This curve is regarded as a “straight line” (geodesic) from the
mixture standpoint. Both standpoints have their own proper
meanings. It is easy to show that the n-coordinates of p*(x, f) is
written as

()= +t(ny — ). (A9)

Hence, the mixture geodesic is a linear curve in the n-coordinates.

By generalizing this idea, we give the following definitions of
straightness or flatness in the manifold S of any exponential family,
where we have two coordinate systems 8 and . Let us consider a
curve O(f) connecting two points 8, and @, linearly in the 0-
coordinates,

8(1) =1(0, — 6,) + 6,.
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This curve is regarded as a straight line from the exponential
standpoint and is called an exponential geodesic or e-geodesic. In
particular, each coordinate curve 8, =t, &, = ¢;(j # i) of the 8-
coordinate system is an e-geodesic. This implies that the manifold §
is e-flat, having an affine coordinate system @, from the e-flatness
point of view. The 8 is called the ecoordinate system.

On the other hand, when a curve connecting two distributions
M, and w, is linear

N =t(ng - M)+

in the m-coordinate system, the curve is said to be the mixture
geodesic or m-geodesic connecting v, and m,. The coordinate
curves 7, of the n-coordinate system are m-geodesics by themselves.
Because the coordinate transformation between @ and w is in
general nonlinear, an e-geodesic is not an m-geodesic in general.
Therefore, we have two different criteria of flatness. The manifold
of an exponential family is flat from both criteria so that it is called
a dually flat manifold. A dually flat manifold has rich differential
geometrical structures.

A.2. Orthoganlity and Fisher Information

We explain the tangent space and the Riemannian metric to define
the orthogonality of two curves. Let e;(/ = 1,...,n) be the tangent
vector along the coordinate curve §,, that is, the direction in which
0, changes but no other 6;(j# i) change (Figure A.l).
(Mathematicians denote it symbolically by 4/88,.) The tangent
space T, of S at a point P = (@) is the vector space spanned by
{e,..-,e,}. When we use the m-coordinate ), the tangent direction
of the coordinate curve 7, is denoted by ;. The same tangent space
T, is spanned also by {e, ..., e}

We now introduce the inner product in tangent space 7,. To
this end, we write the inner product of e; and ¢; as

8 (8) = (e ¢)), (A.5)

FIGURE A.1. Tangent space.

where G = (g;;) is an n x n positive-definite matrix. It is natural to
define it by

20 = E | 1 p(5:8) 1 e p(x 0], (AS)

where E denotes the expectation with respect to p(x; 8) (Rao,
1945). This G = (g;;) is called the Fisher information matrix, which
plays a central role in theoretical statistics. If we use the m-
coordinate system, the same inner product should be given in terms
of the basis vectors €] as

g = (e, ¢)

K] ]
=E o log p(x; 8(m)) an; log p(x; 8(m))|- (A7)

S. Amari

It is proved that G* = (gj;) is the inverse matrix of G.

A manifold S is said to be Riemannian when the inner product
G (8) is defined on the tangent space T, at each point P. Our
manifold of probability distributions is a Riemannian manifold
having two different but dually coupled criteria of “flatness.”

Let 8 = 8(1) or ; = q(z) be a curve. The tangent of the curve is
a vector given by

o) =Y 8 (e (A.8)

where " denotes d/dt. If the same curve is denoted by = w(¢) in the
m-coordinate system, the same tangent vector is written in terms of
the {e/} as

() =D ni(0)e (1). (A9

When two curves 0,(z) and 0.(7) intersect at @, they are
orthogonal if the inner product of the two tangent vector vanishes,

0= (6:(1), (1)) = Z £ (0)61:6y;.
This is rewritten in the m-coordinates as
3 &l (M =0.

Now we show the important duality relation between the bases
{e;} and {e]}. It is proved from G* = G that

€= gy, €= gje. (A.10)

This implies the following theorem.

THEOREM Al. The two bases {e;} and {e;} are dual or reciprocal in
the sense that

(i, €) =6, (A.11)

holds at any point of M, where §;; is the Kronecker delta.

The inner product of two vectors a and b can easily be obtained
by representig them in the dual bases as

a= Z ae, b= z bie.
Then, the inner product is given by
ab=> ab. (A.12)

This shows the usefulness of the dual bases.

The set S of probability distributions of an exponential family
(2) is regarded as an n-dimensional manifold having two coordinate
systems @ and w among others. It is a dually flat Riemannian
manifold, where ® and m play a special dual role. In such a
manifold, it is shown (Amari, 1985; Murray & Rice, 1993) that
these two coordinate systems are connected by the Legendre
transformation

7 =5%¢(0), (A.13)

0 ), (A.14)

0;=a—ni
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where ¢ (%) is defined by the relation
H(8) + () -y 8,7, =0. (A.15)

It is known that —p (%) is the entropy H(w) of the distribution
specified by m.

A.3. Information Geometry of S

The manifold § of an exponential family is a dually flat
Riemannian space. More precisely, S has two dually coupled
affine connections with respect to the Riemannian metric G(0) and
the Riemann—Christoffel curvatures vanish with respect to these
connections but the Levii-Civita connection has nonzero
curvature. When a manifold is dually flat, it is proved that an
invariant divergence measure K(P, Q) is defined between two
points P, Q € S.

The divergence K( P, Q) is derived from the geometric structure
of the underlying manifold. In the case of the manifold of an
exponential family, it is written as

K(®r, mp) =0(0p) +p(mp) — Onng;, (A.16)

where 8, and m, are the 8- and w-coordinates of P and Q,
respectively, and 1s proved to be equal to the KL divergence

K(PIQ) = &, [1og £<_°_)]

pir 00)) A17)

The divergence is not symmetric, that is, K(P, Q) # K(Q, P) in
general, but K(P, Q) > 0 and the equality holds when and only
when P = Q. Moreover, when P and Q = P+ dP are close,
K(P, P+ dP) is a half of the square of the Riemannian distance,

K(P, P+dP) =% S £,(8)d0,d8,, (A.18)

where the coordinates of P and P+ dP are © and 0+ 40,
respectively. The essential role of the divergence is shown by the
following generalized Pythagoras theorem (Figure A.2) (Nagaoka
& Amari, 1982; Amari, 1985).

THEOREM A2. Let P, Q, and R be three points in a dually flat
manifold such that the m-geodesic connecting P and Q is orthogonal
at Q to the e-geodesic connecting Q and R. Then,

K(P, Q)+ K(Q, R)=K(P, R). (A.19)

When § is self-dual and flat, it reduces to the Euclidean space.
The divergence K( P, Q) is a half of the squared Euclidean distance
in this case, so that this theorem reduces to the ordinary
Pythagoras theorem. Two important corollaries follow.

R

e-geodesic

FIGURE A.2.. Generalized Pythagoras theorem.
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Let M be a submanifold in S and let P be a point in S. We
search for the point (0, in M that is closest to P in the sense of the
divergence (Figure A.3) When S is Euclidean, Q; is given by the
orthogonal projection of P to M. In a dually flat manifold,
K(P, Q) # K(Q, P), so that we have two criteria of closeness and
two solutions to this problem.

To solve the problem, we explain the concept of the e- and m-
projections. When the e (m-)-geodesic connection P and Q € M is
orthogonal at Q to M, the point Q is said to be the e (m-)-projection
of P to M. The gencralized Pythagoras theorem shows that the e
(m-)-projection Q,(Q%) of P to Q gives the extremal point of
K(Q, P) (K(P, Q))-

COROLLARY 1. The point Op € M that minimizes K(P, Q), Q € M,
is given by the m-projection of P to M. The m-projection is unique
when M is an e-flat submanifold.

COROLLARY 2. The point Q% € D that minimizes K(Q, P), Q € D, is
given by the e-projection of P to D. The e-projection is unique when D
is an m-flat manifold.

The e- and m-projections are given in the coordinate forms as
follows. Let D be an m-flat submanifold. By taking an adequate m-
coordinate system, we can divide n = (w,, m,) such that D is
defined by

D = {m|m, = ¢; m; isarbitrary}.

Correspondingly, @ is divided into 6 = (8,,0,). Let Pc S be a
point with coordinates 8” = (87, 05) and let Q" be the e-projection
of Pto D. Let 8 = (67, ;) and 9" = (n7, M) be the 8- and -
coordinates of Q°, respectively. Because Q € D, we have iy =¢.
On the other hand, Theorem 2 shows that 8, })art is invariant under
the e-projection. Therefore, we have 8; = 85. To obtain n* or 6°,
we need to solve the following equations

s 0 Lo er
Ny = a0, (8], 6;)

(A.20)
n, =c
or
._ 0 .
0, =g v, e
", (A21)
0; =0].

We have a similar dual formulation for the m-projection when
M is e-flat.

A.4. Dual Differential Geometry

We briefly describe the dual differential geometry of probability
distributions for readers familiar with differential geometry. In a

FIGURE A.3. m-projection of P o M.
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manifold S, we have already defined the Riemannian metric by eqn
(A.5). An affine connection is defined by a covariant derivative
V. Y for two vector fields X and Y. This is determined if we give the
covariant derivative V, e, for the vector fields e; and e; of the
natural basis connected with a coordinate system. Because V,¢; is
a vector field, it is determined in the component form by

Tija (P) = (Ve &5, &). (A22)

This three-index quantity T, is called the coefficients of the
underlying affine connection.

In a Riemannian manifold S, we have the Levi-Civita or
Riemannian connection defined by

1/8 8 a
Tix = 3 (ﬁ &k +§E gix — T gij)~ (A.23)

This is the only torsion-free affine connection preserving the
Riemannian metric. When an affine connection is defined, the
geodesic curve & = 8(s) is given by

V=0 (A.24)
or
Y b+ Tuib6t =0, (A.25)

where * denotes d/dr. A geodesic is a minimum length curve
connecting two points when the Riemannian connection is used.
Let ¢ : 8 = 8(¢) be a curve connecting two points P and . When
tangent vector field 4(¢) along the curve satisfies

V,A=0, (A.26)

a vector A(P) in T, is said to be transported to 4(Q) € T, in
parallel along the curve by the affine connection. We write the
parallel transport as

A(Q) =Tic A(P). (A7)

The conservation of metric implies that

(A(P), A(P))p = (Tlc A(P), Tic A(P)),. (A.28)

The dual geometry defines new torsion-free affine connections
different from the Riemannian one. In a manifold S of probability
distributions, we can define an invariant tensor

[7] [} 0
Tyt = E g5 1og 2. 0) 5 1og p(x, ) 0z og p(x,0)]. (429

The a-connection is defined by

o’ [13
TS =Tye— 5 T (A.30)

The a = O-connection is the Riemannian connection. The a = 1
connection is called the exponential connection and the o = —1
connection is called the mixture connection. They are dual in the
sense that they together preserve the metric,

S. Amari
(AP, AP, = (B AP, TEV A(PY), (A3)

where TIf") and IV are the paralle]l transports with respect to
a = 1 and a = —1 connections, respectively.

An exponential family is special in the sense that they are dually
flat, that is, the Riemann—Christoffel curvatures vanish for o« = 1.
In such a case, we have an e-affine coordinate system 0 for which

I'{}) vanishes. In this case, the geodesic equation reduces to
=0
or
0(r) =a+bt.

This is an e-geodesic. Dually to the above we have another m-affine
coordinate system m for which I‘ﬁ,‘,,” vanishes. The m-geodesic is

then written as

n(t)=a+br

in this coordinate system.

In a dually flat manifold, the following theorem holds.
THEOREM A3. When S is dually flat, there exist two affine-coordinate
systems O and w and two potential functions 1) (8) and ¢ (n) such that
the metric is given by

aZ

£:;(0) = 56,36, ¥(9), (A32)
2

gi;(m) = 5,,?7,7_ w(m). (A33)

The two coordinate systems are connected by the Legendre
transformation

a
7= EF w(o)v

6 = —3'% w(m),
¥(8) +p(m) - Z 0;n;=0.

The natural bases e; = 8/80' and ] = 8/9n' are dual,

(e;, e,') =6

As we stated before, an invariant divergence is defined by
K(P, Q)=4(P)+»(Q) - Z 6f 92,

and the generalized Pythagoras theorem holds.

Information geometry studies new geometrical structures
existing in manifolds of probability distributions. It is generalized
to the fibre bundle structure (Amari & Kawanabe, 1994) and the
conformal structure (Okamoto, Amari, & Takeuchi, 1988). It has
been applied successfully to various fields of information sciences
as is mentioned earlier. It is also related to completely integrable
dynamical systems (Fujiwara & Amari, 1995).



