
Automatic Feature Induction for Text

Classification

Jason Rennie
jrennie@ai.mit.edu

Joint work with Tommi Jaakkola.

1

Definition of Spam is Personal

Subject: Win up to $50--Help out fellow MIT students

From: Alcohol Study <jgut@mit.edu>

Date: Sat, 07 Dec 2002 16:24:17 -0500

To: mitalcoholstudy@yahoo.com

Do you want to be entered into a lottery to win cash prizes?

If so, take a minute and fill out this simple survey at

http://web.mit.edu/jgut/www/Survey.htm. Winners will be

contacted through another web page (/winners.htm) and will be

notified using code words given at the bottom of the survey.

Thank you for your participation.

2

Spam is constantly changing

• Unique Subject strings (e.g. [udxzc]) to avoid hash-matching

• Random From addresses (e.g. xixnsd@naver.com) to avoid
replies

• Friendly Subject/body text (e.g. “Unbelievable, I’m your
neighbor!”) to make you read it

• “Unsubscribe” URL to confirm e-mail addresses

• Interesting use of HTML comments (e.g. “En<!–foo–>gland”)

Every time we discover a feature to catch spam, the spammers will
find a work-around...

3

The Problems with Current Spam Filters

• Most spam filters lex messages in a fixed way.

– Look for words and/or a pre-defined set of features.

• When spammers adapt, a human must find new features to
catch and add them to the system.

• Leads to endless cycle of trailing the spammers—is there a
better way?

4

What types of features are there?

• Many of these are simple string-matches (e.g. “Dear”)

• Many others are simple regular expressions (e.g. 3 consecutive
8-bit characters in HTML comment)

5

A Better Way: Feature Induction

• Learn features automatially: either fixed strings or simple
regular expressions.

• Huge space of possible features. How do we handle it?

6

Compression

Standard compression problem:

• E-mails and labels (ham/spam) are at one end of wire.

• Copy of e-mails at other end of wire.

• What is fewest number of bits needed to transmit labels?

SPAM

HAM

SPAM Transmission Wire

7

Minimum Description Length

• Concept introduced by Jorma Rissanen (1978).

• Idea: Best generalization achieved by smallest encoding of
training examples.

8

MDL: Rule List Example

• Default encoding: each label requires one bit.

• Consider rule: any message contaning “sex” is spam.

• Say 65 training messages include “sex”: 60 are spam, 5 are not.

• Encoding of rule requires 3 log(26) = 14 bits plus 1 bit = 15
bits.

• New encoding of labels requires average of
H(Binom(60

65 , 5
65)) = 0.39 bits per label: 25 bits.

• Improvement: 65− (25 + 15) = 25 bits

9

Simple MDL Algorithm

• Let length = (# examples)

• Let ruleSet = {}
• while (length < oldLength)

– foreach newRule
– calcLength({ruleSet, newRule})

– ruleSet = {ruleSet, bestNewRule}
– length = calcLength(ruleSet)

10

Rule List: Examples of Learned Features

x comp.os.xwindows

windows comp.os.ms-windows.misc

car rec.autos

for sale misc.forsale

turk talk.politics.mideast

486 comp.sys.ibm.pc.hardware

3.1 comp.os.ms-windows.misc

$ misc.forsale

t condition misc.forsale

11

Regular Expressions

• Cost of rule is now encoding of the regular expression.

• Potential features:

– Toll-free telephone numbers

– HTML comments (recall “En<!–foo–>gland”)

– “Dear (something)”

– URLs without “http://”

12

The Bad News

• Inherently tied to a classifier

• Naive implementation is exceedingly slow

• Not clear how to handle counts (non-binary features)

13

The Good News

• MDL approach learns the most appropriate, most general
features for text classification

• Finds digit, punctuation, etc. features just as easily as
alphabetic features

• Automatically learns new features to handle new types of spam
(given labeled examples to learn from)

• Learning is personalized

14

Related Work

• Language Segmentation (de Marcken 1996)

– Also used MDL approach.

– Excellent way to learn parts-based decomposition of objects.

• String Kernels (Haussler 1999, Lodhi et. al. 2001)

– Project document into feature space of substrings of length
n or less, find linear decision boundary.

– Also very computationally expensive.

15

