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Text Classification

• Assign text document a label based on content.

• Important aspect of information management.

• Examples:

– E-mail filtering

– E-commerce
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Example: E-mail Classification

• Filter e-mail into folders set up by user.

• Aids searching for old e-mails

• Can be used to prioritize incoming e-mails

– High priority to e-mails concerning your Ph.D. thesis

– Low priority to “FREE Pre-Built Home Business”
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Example: E-Commerce

• Users locate products in two basic ways: search and browsing.

• Browsing is best when user doesn’t know exactly what he/she
wants.

• Text classification can be used to organize products into a
hierarchy according to description.

• EBay: Classification can be used to ensure that product fits
category given by user.
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Representation

From: dyer@spdcc.com (Steve Dyer)

Subject: Re: food-related seizures?

My comments about the Feingold Diet have no relevance to your

daughter’s purported FrostedFlakes-related seizures. I can’t imagine

why you included it.

↓
food 1

seizures 2

diet 1

catering 0

religion 0

...
...
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Speed is Important!

• Training examples in 1000’s

• High dimensionality (vocabularies of 10,000+)

• Slow training (O(n2), O(n3)) is impractical

• Real applications are especially time critical (imagine waiting 5
minutes while the system corrects for a misclassified e-mail!)
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Can We Trade Speed for Accuracy?

• Not easily

• Most algorithms are either “fast” or “slow”

Fast (Linear) Slow (Low order polynomial)

Naive Bayes Support Vector Machine

Rocchio k-Nearest Neighbor

Neural Network

Least-squares fit

• Currently no bridge exists
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Subsampling

• Subsampling eliminates some training documents to make
training faster.

• But, accuracy suffers...
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Bundled-SVM: Preserve Sufficient Statistics

• Fast classification algorithms (e.g. Naive Bayes, Rocchio) are
based on mean

• Idea: reduce training data but preserve sufficient statistics

• Sufficient statistics are enough for training of simple algorithms

• Worst we should do is as well as simple algorithms
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Accurate Endpoint: SVM

• Support Vector Machine uses points on boundary of two classes
to determine decision plane.

• Training time is approximately quadratic.
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Fast Endpoint: Rocchio/Naive Bayes

• Rocchio and Naive Bayes choose a boundary based on the
mean of the data.

• Training time is linear.
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Bundled-SVM

• Feed bundled (averaged) data points to SVM.

• Time/accuracy trade-off based on amount of bundling.
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The Bundled-SVM is very fast

User Process Times For Bundle Sizes on 20 News
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The Bundled-SVM is very accurate

• The Bundled-SVM creates a continuum of classifiers that trade
off speed for accuracy.

Accuracy for Bundled-SVM on 20 News
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Classification Results

• Accuracy never decreases below Naive Bayes baseline

Data Set SVM t = 2 t =
√

n t = min NB

Reuters (micro) 0.857 0.884 0.857 0.708 0.736

Reuters (macro) 0.631 0.681 0.586 0.508 0.264

20 News 0.788 0.788 0.784 0.723 0.689

Industry Sector 0.928 0.909 0.878 0.901 0.566
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Conclusions

• The Bundled-SVM is an effective way to trade off speed for
accuracy

• It speeds up training by using a reduced data set

• Unlike subsampling, it preserves the important sufficient
statistics of the data

• Bundling algorithm works for arbitrary mean statistics (e.g.
Gaussian with full covariance matrix)
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