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Text Classification

• Assign text document a label based on content.

• Examples:

– E-mail filtering

– Knowedge-base creation

– E-commerce

– Question Answering

– Information Extraction
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Example: E-mail Classification

• Filter e-mail into folders set up by user.

• Aids searching for old e-mails

• Can be used to prioritize incoming e-mails

– High priority to e-mails concerning your Ph.D. thesis

– Low priority to “FREE Pre-Built Home Business”
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Knowedge-Base Creation

• Company web sites provide large amounts of information about
products, marketing contact persons, etc.

• Categorization can be used to find companies’ web pages and
organize them by industrial sector.

• This information can be sold to, e.g. person who wants to
market “Flat Fixer” to tire company.
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E-Commerce

• Users locate products in two basic ways: search and browsing.

• Browsing is best when user doesn’t know exactly what he/she
wants.

• Text classification can be used to organize products into a
hierarchy according to description.

• EBay: Classification can be used to ensure that product fits
category given by user.
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Question Answering

• “When did George Washington die?”

• Search document database for short strings with answer.

• Rank candidates

• Many features (question type, proper nouns, noun overlap,
verb overlap, etc)

• Problem: learn if string is the answer based on its feature
values.
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Information Extraction

• Want to extract information from talk announcements (room,
time, date, title, speaker, etc)

• Many features may identify the information (keyword,
punctuation, capitalization, numeric tokens, etc.)

• Problem: scan over text of document, filling buckets with
desired information.

• Freitag (1998) showed that this approach could identify speaker
(63%), location (76%), start time (99%) and end time (96%).
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Representation

From: dyer@spdcc.com (Steve Dyer)

Subject: Re: food-related seizures?

My comments about the Feingold Diet have no relevance to your

daughter’s purported FrostedFlakes-related seizures. I can’t imagine

why you included it.

↓
food 1

seizures 2

diet 1

catering 0

religion 0

...
...
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Representation

• Punctuation is removed, case is ignored, words are separated
into tokens. Known as “feature vector” or “bag-of-words”
representation.

• Vector length is size of vocabulary. Common vocabulary size is
10,000-100,000. Classification problem is very high dimensional.

• Richer representations (word order, document structure) don’t
help classification.
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Transformation

• Word vector has problems:

– longer document ⇒ larger vector

– words tend to occur a little or a lot

– rare words have same weight as common words

• SMART “ltc” transform:

– new-tfi = log(tfi + 1.0)

– new-wti = new-tfi ∗ log num-docs
num-docs-with-term

– norm-wti = new-wti√P
i new-wt2i
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Example Word Vectors

• god 13 15 1 5 1 5 3 4 10 1 2 1 1 1 1 1 2 1 10 1 5 1 3 19 1 1 22 1
1 2 1 3 8 4 1 1 1 1 1 4 1 3 1 1 3 2 2 2 4 2 15 2 7 2 3 6 1 1 1 3 2
3 21 2 1 2 1 1 7

• planet 1 1 1 2 2 80 1 1 1 1 1 1 1

• context 1 5 1 1 3 1 3 3 1 10 1 1 2 1 1

• sleep 16 1 1

• jesus 1 8 2 1 1 1 6 2 2 1 4 4 9 1 9 1 2 20 2 1 5 1 1 19 3 1 1 1 4 8

• understand 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 3 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
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Types of Classification Problems

• Binary: label each new document as positive or negative.
Is this a news article Tommy would want to read?

• Multiclass: give one of m labels to each new document.
Which customer support group should respond to this e-mail?

• Multilabel: assign zero to m labels to each new document.
Who are good candidates for reviewing this research paper?

• Ranking: rank categories by relevance.
Help user annotate documents by suggesting good categories.
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Ranking: E-mail categorization

• Problem: Any automated filter will occasionally put e-mail in
wrong folder.

• Problem: It’s cumbersome to move e-mail from Inbox to
storage folders when you have lots of folders.

• Solution: Rank. Sort folders in order of relevance for this
e-mail. Correct folder will usually be at top.

• Segal and Kephart (1999)

13



Why is text different?

• Near independence of features

• High dimensionality (often larger vocabulary than # of
examples!)

• Importance of speed
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Colocations

• Meaningful word-pairs, like “machine learning” should be
useful in classification, shouldn’t they?

• If you see “machine learning,” is there any doubt that the
document is about machine learning?

• But, how do you make that connection?
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Colocations: Question

• Vocabulary sizes for reasonable-length documents (say 50+
words) are around 30k.

• This puts the number of possible colocations at 9× 108.

• With 10,000 training documents, how do you learn
them?
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Colocations: Answer

• You can’t!a

• ...at least, not without some domain knowledge or a peculiar
data set.

aRemember that we’re using document vectors. We’re really talking about

finding “machine” and “learning” in the same document. But, to take advantage

of “machine learning”, you need a much richer feature set.

17



Colocations: Explanation

• Rifkin and I (2001) found no improvement in text classification
on two data sets using non-linear kernels for the SVM.

• Yang and Liu (1999) made the same findings on Reuters-21578.

• Dumais (1998) found the linear SVM outperforming a Bayes
net with pair-wise dependencies.

• But, can’t linear classifiers learn some correlation information?
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Colocations: Explanation

• Yes. They can. But, consider this experiment:

• Scramble word frequencies between documents (enforce the
independent features assumption):

d1 d2

dog 5 dog 2

cat 3 cat 7

head 1 head 4

joke 0 joke 2

→

d′1 d′2

dog 2 dog 5

cat 3 cat 7

head 4 head 1

joke 0 joke 2
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Colocations: Explanation

• Both document sets yield the same accuracy for a linear SVM!

• 20 Newsgroups, 12,000 training documents, 10 random
test/train splits:

Regular Scramble

0.1346 0.1346

0.1362 0.1362

0.1361 0.1361

0.1356 0.1356
...

...

0.1347 0.1347

• Identical!
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One-vs-all

• How would you do multiclass classification with a binary
classifier?

• Standard approach is one-vs-all.

• Construct 1 vs. {2, 3, . . . , n}, 2 vs. {1, 3, . . . , n}, . . .

• Assign label of most confident classifier.

• Will this work if we’re using a linear classifier?
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One-vs-All

• Four points in two-dimensional space aren’t necessarily
separable with linear one-vs-all boundaries.

• In general, n + 2 points in n-dimensional space aren’t separable
with linear one-vs-all boundaries (recall that n + 1 points
define a hyper-tetrahedron).
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One-vs-All

• Rifkin and I (2001) ran text classification experiments and
found that one-vs-all worked very well—just slightly worse
than the best multiclass technique!

• Couldn’t these decision boundaries be difficult to learn?
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One-vs-All

20 Newsgroups

Error

OVA 0.131

BCH 0.125

Industry Sector

Error

OVA 0.072

BCH 0.067

• We’ll talk about BCH later. For now, think of it as the
multi-class technique to beat.
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High Dimensionality: One-vs-All

• 20 Newsgroups & Industry Sector have vocabulary sizes of
62,061 and 55,197, respectively. # classes: 20 and 105. #
training examples: 16,000 and 4900.

• KEY: Linear one-vs-all boundaries are easy to find in
high-dimensional space.
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More High Dimensionality

• Another interesting property of data living in high dimensional
space is that data points are usually lineary independent.

• Take 20 Newsgroups: 20,000 news stories in 62,061 dimensional
space.

• These documents span a 19,998-dimensional space (only two
documents can be removed as linear constructs of the others!)

• So what?
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The SVM

An SVM is trained via the following optimization problem:

ŵ = arg min
w

1
2
‖w‖2 + C

∑

i

ξi, (1)

with constraints

yi(di · w + b) ≥ 1− ξi ∀i, (2)

ξi ≥ 0 (3)

where each di is a document vector, yi is the label (+1 or −1) for
di and ŵ is the vector of weights that defines the optimal
separating hyperplane. This form of the optimization is called the
“primal.” By incorporating the inequality constraints via Lagrange
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multipliers, we arrive at the “dual” form of the problem,

ŵ = arg max
w

∑

i

αi − 1
2

∑

i,j

αiαjyiyj(di · dj) (4)

subject to

0 ≤ αi ≤ C ∀i (5)
∑

i

αiyi = 0 (6)

Given optimized values for the αi, the optimal separating
hyperplane is

ŵ =
∑

i

αiyidi. (7)
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High Dimensionality: Subsampling

• Question: What happens when you train a linear SVM on
15,000 20 Newsgroups documents?

• Answer: You get *lots* of support vectors—about 5,500.

• Implication: Subsampling is bad for text classification with the
SVM.

• This is important because the fastest SVM implementations
are (appx.) quadratic in the number of training examples (cn2)
(Joachims 1997)a; subsampling is a standard technique for
speeding up super-linear (> cn) algorithms.

aRif has regularization network classifiers that work much faster and perform

about as well, but they can still be slow compared to linear-time algorithms
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High Dimensionality: α’s

• Subsampling effectively constrains αi = 0 for the removed docs
(let αs be vector of α’s in subsampled problem; think about
mapping these back to the full set of documents)

• Concatenating documents imposes a different constraint:
αi = αj .

• Concatenating also preserves mean statistics.

• Good, linear-time classifiers, like Naive Bayes and Rocchio are
based on class means.
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Concatenation

• Concatenate dn−1 and dn to get D = {dc
1, . . . , d

c
n−1}.

• dc
i = di for i ∈ {1, . . . , n− 2}, dc

n−1 = dn−1 + dn.

• After training: αc = {αc
1, . . . , α

c
n−1}, wc =

∑n−1
i=1 αc

iyid
c
i .

• Back to original documents...

– Let αi := αc
i for i ∈ {1, . . . , n− 2} and αn−1 := αn := αc

n−1.

– Then, wc =
∑n

i=1 αiyidi.
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Naive Bayes in One Slide

• Likelihood: p(Dc|θ) = Nc!Q
k Nc

k !

∏
k θ

Nc
k

k .

• Dirichlet prior: p(θ) = Dir(θ|{αk}) = Γ(α)Q
k Γ(αk)

∏
k θαk−1

k .

• Let αk = 2 ∀k. Estimated parameters are

θ̂c
k = arg max

θ
p(Dc|θ)p(θ) =

N c
k + 1

N c + V
. (8)

• Decision rule is

Ĥ(d) = arg max
c

∏

k

(
N c

k + 1
N c + V

)nk

(9)

• αk = 2 gives ficticious count of 1 for every estimate
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Rocchio in One Slide

• First, apply a cool transform to the document vectors (like
SMART ltc).

• Then, create a “prototype” vector for each class:

cj = α
1
|Cj |

∑

d∈Cj

d

‖d‖ − β
1

|D \ Cj |
∑

d∈D\Cj

d

‖d‖ (10)

• α and β are mysterious parameters. The gods say they should
be set to α = 16 and β = 4 (or optimized via cross-validation).

• A new document is assigned the class with the smallest angle
between that vector and the prototype vector.
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Bundled-SVM

• Concatenate together documents within class to create bundles.

• Apply SMART ltc transform, hand bundles to SVM.

• Size of bundles allows trade-off between speed and accuracy.

• Works much better than subsampling in tests (Shih, Chang,
Rennie 2002).
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Bundled-SVM

Accuracy for Bundled-SVM on 20 News

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0 20 40 60 80 100

Bundle Size/Subsample Amount

M
u

lt
i-

C
la

ss
 A

cc
u

ra
cy

Bundled-SVM

Subsampled-SVM

Naïve Bayes

35



Bundled-SVM

• Reuters: multi-label problem, 90 topics, # documents/topic
range from 1,000 to 1 (many topics with few documents)

• On Reuters-21578, improves speed and accuracy! (micro: .857
→ .884; macro: .631 → .681 for bundle-size=2)

– Some Reuters documents are super-short.

– In one-vs-all docs in “one” class often have nearly equal
alphas (concatenation may be the right thing anyway).

– We’re still trying to explain this one...
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Classifier Evaluation

• How do you evaluate a classifier?

• First, some terminology...

Guess

+1 −1

True +1 tp fn

Label −1 fp tn

• recall = 1-miss = tp/(tp+fn)

• precision = tp/(tp+fp)

• false alarm = fp/(fp+tn)
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Classifier Evaluation

• Error is one way to evaluate, but what if positives are really
important. Think information retrieval/search engines.

• Say you’d rather see some junk (low precision) than lose an
e-mail from your advisor (low recall).

• Also, different classifiers have different objectives (minimize
error, minimize hinge loss, maximize likelihood, etc.)

• How do you ensure that you’re evaluating them on equal
footing?

• Better classifier could have higher error!
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Breakeven

• Tradition (for text) is to evaluation classifiers in terms of
precision and recall.

• Breakeven is point where precision=recall.

• If one classifier is uniformly better (in p/r), it will have a
higher breakeven.

• Macro-breakeven: average breakevens for all topics.

• Micro-breakeven: point where precision=recall with tp, tn, fp
summed over all classifiers.
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Problems with Breakeven

• P-R curve not convex.

• May need to interpolate to get precision=recall. Not
necessarily achievable.
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Problems with Breakeven

• P-R breakeven is also not particularly well defined!

• There can be multiple precision=recall points and there’s no
standard for handling them.

• Also, micro-breakeven is deceptively sensitive to minor changes
in the data set...
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Problems with Micro-Breakeven

• Reuters-21578 has 90 topics with 1+ training docs, 1+ test
docs.

• Reuters-21578 has 95 topics with 2+ training docs.

• Difference: 11 out of 3300 test documents (0.33%)

• One one-vs-all classifier per topic (multi-label problem).

• What will the difference in micro P-R breakeven be? (wait)
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Problems with Micro-Breakeven

• 1.5% (86.3 vs. 87.8)

• Why so big a difference?

• Contribution from recall is small (limited by number of
training documents.

• Precision can hurt. Lots of negative examples. Each has the
possibility of being a false positive.
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ROC Breakeven

• ROC Curve is the only true characterization of a classifier:
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ROC Breakeven

• ROC Breakeven: point where curve intersections 45◦ line.

• Or, it’s the point where miss=false alarm.

• Better than P-R Breakeven:

– ROC Breakeven is always achievable (ROC curve is convex).

– A (0.8, 0.8) breakeven tells you that (0.9, 0.4) and (0.4, 0.9)
points are achievable (convexity, (0, 1) & (1, 0)).

– Well-specified: ROC Breakeven is unique and always exists.
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Summary

• Text is High Dimensional

• It has nearly independent features

• Speed is important

• Evaluating text classifiers (and classifiers in general) requires
care.
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Error-Correcting Output Coding

• How do you do multi-class classification with a binary learner?

• One-vs-all works fine, but are there other ways?

• What if we view a binary classifier as a noisy channel. Noise
corresponds to classification errors.

• If errors are independent, we can indefinitely reduce errors.
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Error-Correcting Output Coding

• Matrix specifies the code for each label (row of matrix)

• Each label is identified by unique bit-vector

• Motivation: errors can be corrected using more bits than are
needed to partition labels.

R =




−1 −1 −1 −1 −1

+1 +1 +1 −1 −1

+1 +1 −1 +1 +1

−1 −1 +1 +1 +1




(11)
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Error-Correcting Output Coding

• Train one binary classifier per column of matrix.

• Code for example is output of binary classifiers.

• Classify by matching example with “closest” code (e.g.
Hamming distance)

R =




−1 −1

−1 +1

+1 −1

+1 +1




c2

c1 c3

c4
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ECOC: The Loss Function

• General form of decision rule is

Ĥ(x) = arg min
c∈{1,...,m}

l∑

i=1

g(fi(x)Rci) (12)

• fi(x) is the output of the binary classifier; fi(x) > 0 is a +1
classification, fi(x) < 0 indicates −1.

• The loss function allows a non-linear transform on the outputs:
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ECOC: Example

• Let R =

2666664
−1 −1 +1

−1 +1 −1

+1 −1 −1

+1 +1 +1

3777775, g(x) = (1− x)+ and

f1(x) = −2

f2(x) = −1

f3(x) = −5

.

• c = 1 c = 2 c = 3 c = 4
∑

g(fi(x)Rci) 3 2 6 11

• ECOC selects class 2.
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Previous Work: ECOC with Naive Bayes

• Berger used ECOC with Naive Bayes to do multiclass text
classification [1999].

• He used random code matrices and a Hamming-like loss
function. Minor improvements over Naive Bayes were found
(10-20% less error).

• Ghani added BCH codes, used the Hamming loss and ran
experiments on a data set with 105 classes and 27-102
documents/class [2000].

• Ghani found 66% less error than Naive Bayes.
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Experiments: Questions to be answered

• Will the SVM dominance in binary problems convey to
multiclass problems?

• What loss function works best with Naive Bayes and the SVM?

• What types of code matrices yield best performance?
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Experiments: Answers

• Better SVM binary performance yields lower multiclass error.

• Hinge, g(x) = (1− x)+, and Linear, g(x) = −x, work best.

• BCH performs best, but OVA is nearly as good.
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Multiclass Error

20 Newsgroups 800 250 100

SVM NB SVM NB SVM NB

OVA 0.131 0.146 0.167 0.199 0.214 0.277

Random 63 0.129 0.154 0.171 0.198 0.222 0.256

BCH 63 0.125 0.145 0.164 0.188 0.213 0.245

Industry Sector 52 20 10

SVM NB SVM NB SVM NB

OVA 0.072 0.357 0.176 0.568 0.341 0.725

Random 63 0.072 0.135 0.189 0.279 0.363 0.453

BCH 63 0.067 0.128 0.176 0.272 0.343 0.443
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Binary Performance: What measure to use?
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• Connection between binary error and multiclass classification
can be very poor (guessing yields 5% error).
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Binary Performance: What measure to use?

• When example distribution is skewed (as with OVA), binary
error mainly judges performance on one class.

• If 95% of examples are class “+1”, guessing achieves error of
5%.

• Classifier that guesses provides no information about the label
of the example.

• Better characterization of performance evenly weights the
classes.
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Binary Performance: ROC Breakeven

Guess

+1 −1

True +1 tp fn

Label −1 fp tn

• New measure of multiclass performance: average of false alarm
and miss rates when difference is minimized.

• Let FA = fp/(tp + tn) and miss = fn/(fn + tp).

• ROC breakeven is (FA + miss)/2 when |FA−miss| is
minimized.

• Unlike precision-recall breakeven, ROC breakeven is convex
combination of points on ROC curve & is always achievable.

58



ROC Breakeven follows BCH performance
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• 20 Newsgroups: consistent gap between ROC breakeven scores
leads to similar multiclass error gap.

• Industry Sector: divergent ROC breakeven scores gives large
difference in multiclass error.
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ROC Breakeven follows OVA performance
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• 20 Newsgroups: large ROC breakeven changes result in small
multiclass error changes.

• Industry Sector: improved SVM ROC breakeven scores causes
much lower multiclass error.
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The Loss Function

20 Newsgroups Hinge Linear

OVA/SVM 0.131 0.131

OVA/NB 0.146 0.146

BCH 63/SVM 0.125 0.126

BCH 63/NB 0.145 0.144

Industry Sector Hinge Linear

OVA/SVM 0.072 0.072

OVA/NB 0.357 0.357

BCH 63/SVM 0.067 0.067

BCH 63/NB 0.128 0.127

• Hinge and Linear loss functions show nearly identical
multiclass error.

• Hamming yields worst errors: contributes no confidence info.

• Linear and shifted version of Hinge, g(x) = (−x)+, are
equivalent for ECOC.

• Binary loss fn. is not necessarily “correct” ECOC loss fn.
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Conclusions

• When used with ECOC, SVM is better multiclass text classifier
than NB.

• Improvements over NB are because of better binary
performance.

• OVA performs well with confidence information and good
binary learner.

• Important aspect of loss function is transmission of confidence
information.

• Text classification (bag-of-words) may be linear problem.
Linear SVM/Linear loss fn.
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Future Work

• Matrix design: Different data sets have different natural
partitionings. Can we learn the best matrix for a particular
data set? [Crammer and Singer, 2001]

• Boosting: ECOC partitions according to class boundaries. Can
we gain additional benefit from weighting examples within
classes? [Guruswami and Sahal, 1999] [Schapire, 1997]
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