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Abstract

There are numerous text documents available in electronic form. More and more
are becoming available every day. Such documents represent a massive amount of
information that is easily accessible. Seeking value in this huge collection requires
organization; much of the work of organizing documents can be automated through
text classification. The accuracy and our understanding of such systems greatly
influences their usefulness. In this paper, we seek 1) to advance the understanding
of commonly used text classification techniques, and 2) through that understanding,
improve the tools that are available for text classification. We begin by clarifying
the assumptions made in the derivation of Naive Bayes, noting basic properties and
proposing ways for its extension and improvement. Next, we investigate the quality
of Naive Bayes parameter estimates and their impact on classification. Our analysis
leads to a theorem which gives an explanation for the improvements that can be
found in multiclass classification with Naive Bayes using Error-Correcting Output
Codes. We use experimental evidence on two commonly-used data sets to exhibit an
application of the theorem. Finally, we show fundamental flaws in a commonly-used
feature selection algorithm and develop a statistics-based framework for text feature
selection. Greater understanding of Naive Bayes and the properties of text allows us
to make better use of it in text classification.

Thesis Supervisor: Tommi Jaakkola
Title: Assistant Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

There are numerous text documents available in electronic form. More are becoming
available constantly. The Web itself contains over a billion documents. Millions
of people send e-mail every day. Academic publications and journals are becoming
available in electronic form. These collections and many others represent a massive
amount of information that is easily accessible. However, seeking value in this huge
collection requires organization. Many web sites offer a hierarchically-organized view
of the Web. E-mail clients offer a system for filtering e-mail. Academic communities
often have a Web site that allows searching on papers and shows an organization
of papers. However, organizing documents by hand or creating rules for filtering is
painstaking and labor-intensive. This can be greatly aided by automated classifier
systems. The accuracy and our understanding of such systems greatly influences
their usefulness. We aim 1) to advance the understanding of commonly used text
classification techniques, and 2) through that understanding, to improve upon the
tools that are available for text classification.

Naive Bayes is the de-facto standard text classifier. It is commonly used in practice
and is a focus of research in text classification. Chakrabarti et al. use Naive Bayes
for organizing documents into a hierarchy for better navigation and understanding
of what a text corpus has to offer [1997]. Frietag and McCallum use a Naive Bayes-
like model to estimate the word distribution of each node of an HMM to extract
information from documents [1999]. Dumais et al. use Naive Bayes and other text
classifiers to automate the process of text classification [1998]. That Naive Bayes is
so commonly used is an important reason to gain a better understanding of it. Naive
Bayes is a tool that works well in particular cases, but it is important to be able
to identify when it is effective and when other techniques are more appropriate. A
thorough understanding of Naive Bayes also makes it easier to extend Naive Bayes
and/or tune it to a particular application.

There has been much work on Naive Bayes and text classification. Lewis gives
a review of the use of Naive Bayes in information retrieval [Lewis, 1998]. Unlike
text classification, information retrieval practitioners usually assume independence
between features and ignore word frequency and document-length information. The
multinomial model used for text classification is different and must be treated as
such. Domingos and Pazzani discuss conditions for when Naive Bayes is optimal
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for classification even when its probability assessments are incorrect [Domingos and
Pazzani, 1996]. Domingos and Pazzani clarify this point and show simple cases of
when Naive Bayes is optimal for classification. Analysis of Naive Bayes like the
work of Domingos and Pazzani is important, but little such work exists. Berger
and Ghani individually ran experiments using ECOC with Naive Bayes. Both found
that they were able to improve performance over regular Naive Bayes [Berger, 1999;
Ghani, 2000]. But, neither adequately explains why regular Naive Bayes performs
poorly compared to ECOC. Yang and Pedersen conduct an empirical study of feature
selection methods for text classification [Yang and Pedersen, 1997]. They give an
evaluation of five different feature selection techniques and provide some analysis of
their differences. But, there is still need for better understanding of what makes
a good feature selection method. Yang and Pedersen say that common terms are
informative for text classification, but there are certainly other factors at work.

The application of Naive Bayes to multiclass text classification is still not well
understood. An important factor affecting the performance of Naive Bayes is the
quality of the parameter estimates. Text is special since there is a large number
of features (usually 10,000 or more) and many features that provide information
for classification will occur only a handful of times. Also, poor estimates due to
insufficient examples in one class can affect the classifier as a whole. We approach
this problem by analyzing the bias and variance of Naive Bayes parameter estimates.

Naive Bayes is suited to perform multiclass text classification, but there is reason
to believe that other schemes (such as ECOC and multiclass boosting) can yield
improved performance using Naive Bayes as a component. Regular Naive Bayes can
be more efficient than these schemes, so it is important to understand when they
improve performance and when they merely add inefficient baggage to the multiclass
system. We show how ECOC can yield improved performance over regular Naive
Bayes and give experimental evidence to back our claims.

The multitude of words that can be found in English (and other languages) often
drives practitioners to reduce their number through feature selection. Feature selec-
tion can also improve generalization error by eliminating features with poor parameter
estimates. But, the interaction between feature selection algorithms and Naive Bayes
is not well understood. Also, commonly used algorithms have properties that are not
appropriate for multiclass text classification. We point out these flaws and suggest a
new framework for text feature selection.

8



Chapter 2

Naive Bayes

When someone says “Naive Bayes,” it is not always clear what is meant. McCallum
and Nigam clarify the picture by defining two different Naive Bayes “event models”
and provide empirical evidence that the multinomial event model should be preferred
for text classification [1998]. But, there are multiple methods for obtaining the pa-
rameter estimates. In the interest of clarity, we carefully step through the multinomial
derivation of Naive Bayes and distinguish between variations within that model. We
also present a fully Bayesian derivation of Naive Bayes, that, while not new, has yet to
be advertised as an algorithm for text classification. Through a careful presentation,
we hope to clarify the basis of Naive Bayes and to give insight into how it can be
extended and improved.

To simplify our work, we assume that for each class, c ∈ {1, . . . ,m}, there is an
(unknown) parameter vector, θc, which generates documents independently. Some
documents are observed as being part of a particular class (known as training docu-
ments and designated with Dc); others are test documents. This model is depicted in
figure 2-1. We further assume that the generation model is a multinomial and ignore
document length concerns.

2.1 ML Naive Bayes

One formulation of Naive Bayes is to choose the parameters that produce the largest
likelihood for the training data. One then makes predictions using the estimated
parameter vector, θ̂c. This method has obvious flaws and includes strong assumptions
about the generation of data. For example, any feature that does not occur in the
training data for a class is assumed to not occur in any document generated by that
class. However, this method, known as Maximum Likelihood (ML) can be effective
in practice and is efficient to implement. It is used regularly in other domains. We
call the multinomial version of this ML Naive Bayes.

The ML parameter for class c is

θ̂c = argmaxθ p(D
c|θ). (2.1)

Dc is the training data for class c and θc is the class c parameter vector for a multi-
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Figure 2-1: A graph of the independence relations between variables in classification.
θ is the class multinomial parameter vector. Dc is the set of training documents for
class c. d is test document to be classified.

nomial model. p(Dc|θ) is a multinomial likelihood,

p(Dc|θ) =
N c!∏
kN

c
k !

∏
k

θ
Nc
k

k . (2.2)

We use N c
k to notate the number of times word wk occurs in the class c training data

(N c =
∑

kN
c
k). θk is the kth component of the multinomial parameter vector and is

the probability that word wk will appear as a single event of a multinomial trial. The
ML estimate based on Dc (the θ̂c that maximizes p(Dc|θ̂c)) is θ̂ck =

Nc
k

Nc ∀k.

For ML Naive Bayes, we assume that our estimated parameter vector, θ̂c, is the
vector that generated Dc; we use θ̂c to assess whether a test document, d, was gen-
erated from class c. Since we infer a parameter vector, any prediction made about a
test document, d, only implicitly depends on the training data, Dc; the setting of θc

in figure 2-1 bottlenecks information that Dc may provide about d.
The Bayes optimal decision rule for classification is

Ĥ(d) = argmaxc p(c|D, d) = argmaxc p(d|θ̂c)p(c). (2.3)

D = {D1, . . . , Dm} is the set of all training data. If our class prior, p(c), is uniform,
our classification rule simply chooses the class for which the test document is most
likely,

Ĥ(d) = argmaxc p(d|θ̂c) = argmaxc
∏
k

(
N c
k

N c

)fk
. (2.4)

fk notates the number of times word wk occurs in d. This decision rule is augmented
for text classification because p(d|θ̂c) = 0 when fk > 0 and N c

k = 0. To ensure that
this cannot happen, the training data counts are supplanted with fictitious counts.
The rationale for adding these counts varies. Using a fictitious count of ak for word

10



wk (a =
∑

k ak), we arrive at the modified decision rule,

Ĥ(d) = argmaxc
∏
k

(
N c
k + ak
N c + a

)fk
. (2.5)

Uniform fictitious counts (ai = aj ∀i, j) across all words are often used. A common
choice is ak = 1.

2.2 MAP Naive Bayes

ML Naive Bayes leaves something to be desired because it does not include the frame-
work to explain the fictitious counts. As a result, we do not know what the fictitious
counts represent. We would like to know what assumptions about parameter estima-
tion underpins their inclusion in the decision rule. For this, we turn to a generaliza-
tion of ML estimation, Maximum A Posteriori (MAP) estimation. MAP estimation
produces the “fictitious counts” thorough a particular choice of parameter prior dis-
tribution. Except for the change in the way we estimate parameters, MAP Naive
Bayes is identical to ML Naive Bayes. We still select a “best” parameter vector, θ̂c

and use that vector for classification.
For MAP estimation, we estimate the parameter vector according to

θ̂c = argmaxθ p(θ|Dc) = argmaxθ p(D
c|θ)p(θ), (2.6)

where p(θ) is the parameter prior term. MAP estimation is a generalization of ML
estimation; ML is MAP with p(θ) = C (C is the appropriate constant). We choose
the Dirichlet as the general form of the prior. It has hyper-parameters{αk}, αk > 0
(α =

∑
k αk). The density of the Dirichlet is

p(θ) = Dir(θ|{αk}) =
Γ(α)∏
k Γ(αk)

∏
k

θαk−1
k . (2.7)

Γ(x) is the Gamma function. It satisfies Γ(x+1) = xΓ(x) and Γ(1) = 1. Γ(n+1) = n!
for n ∈ {0, 1, 2, . . . }. A valuable property of the Dirichlet is that it is the the conjugate
prior to the multinomial distribution. This makes the posterior distribution Dirichlet,

p(θ|Dc) =
p(Dc|θ)p(θ)
p(Dc)

= Dir(θ|{N c
k + αk}). (2.8)

Setting θk =
Nc
k+αk−1

Nc+α−V maximizes this expression (for αk ≥ 1). V is the size of the
vocabulary. Setting αk = ak + 1 gives us the “fictitious counts” in equation 2.5
without any ad hoc reasoning. The MAP derivation makes clear that the fictitious
counts represent a particular prior distribution on the parameter space. In particular,
the common choice of ak = 1 ∀i represents a prior distribution in which more uniform
parameters (e.g. θk = 1

V
∀i) are preferred.
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2.3 Expected Naive Bayes

The MAP NB decision rule is commonly used, but it is sometimes derived in a different
way [Chakrabarti et al., 1997] [Ristad, 1995]. Instead of maximizing some aspect of
the data, an expected value of the parameter is used,

θ̂ck = E[θck|N c
k ] =

∫
θp(θ|N c

k)dθ =

∫
θ
p(N c

k |θ)p(θ)
p(N c

k)
dθ. (2.9)

θ̂ck is the estimate of the parameter θck. N
c
k is the number of times word wk appears

in class c training documents. With a uniform prior, we get the MAP NB decision
rule with ak = 1 ∀k,

E[θck|N c
k ] =

N c
k + 1

N c + V
. (2.10)

V is the size of the vocabulary. Maximizing the posterior with a prior that prefers
uniform parameters (αk = 2 ∀k) gives us the same parameter estimates as when a
uniform prior and expected values are used.

2.4 Bayesian Naive Bayes

MAP Naive Bayes chooses a particular parameter vector, θ̂c, for classification. This
simplifies the derivation, but bottlenecks information about the training data for
classification. An alternative approach is to use a distribution of parameters based on
the data. This complicates the derivation somewhat since we don’t evaluate p(d|c,D)
as p(d|θ̂c). Instead, we integrate over all possible parameters, using p(θ|Dc) as our
belief that a particular set of parameters generated Dc.

As in ML & MAP Naive Bayes, we start with the Bayes optimal decision rule,

Ĥ(d) = argmaxc p(c|D, d) = argmaxc p(d|c,D)p(c). (2.11)

We expand p(d|c,D) to

p(d|c,D) =

∫
p(d|θ)p(θ|Dc)dθ. (2.12)

p(d|θ) = f !∏
k fk!

∏
k θ

fk
k is the multinomial likelihood. We expand the posterior via

Bayes’ Law, p(θ|Dc) = p(Dc|θ)p(θ)
p(Dc)

and use the Dirichlet prior, as we did with MAP
Naive Bayes. This gives us a Dirichlet posterior,

p(θ|Dc) = Dir(θ|{αi +N c
i }) =

Γ(α +N c)∏
i Γ(αi +N c

i )

∏
i

θ
Nc
i +αi−1

i . (2.13)
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Substituting this into equation 2.11 and selecting p(c) = 1
m

, we get

Ĥ(d) = argmaxc
Γ(α +N c)∏
i Γ(αi +N c

i )

∏
i Γ(N c

i + αi + fi)

Γ(N c + α + f)
. (2.14)

This fully Bayesian derivation is distinct from the MAP and ML derivations, but
it shares similarities. In particular, if we make the approximations

Γ(α +N c)

Γ(α +N c + f)
≈ 1

(α +N c)f
and

∏
i Γ(αi +N c

i + fi)∏
i Γ(αi +N c

i )
≈
∏
i

(αi +N c
i )
fi , (2.15)

we get a decision rule very similar to that of MAP Naive Bayes,

Ĥ(d) = argmaxc∈C
∏
k

(
αk +N c

k

α +N c

)fk
. (2.16)

The lone difference is that MAP Naive Bayes uses different Dirichlet hyper-parameters
to achieve this rule.

Bayesian Naive Bayes is distinct from MAP Naive Bayes in its decision rule.
As shown above, modifications can be made to make the two identical, but those
modifications are not generally appropriate. In fact, the modifications exhibit the
differences between MAP and Bayesian Naive Bayes. Compared to MAP, Bayesian
Naive Bayes over-emphasizes words that appear more than once in a test document.
Consider binary (+1,−1) classification with N+1 = N−1. Let d be a test document
in which the word wk appears twice. The contribution for wk in MAP Naive Bayes is
(ak +N c

k)
2; the similar contribution for wk in Bayesian Naive Bayes is (αk +N c

k)(αk +
N c
k + 1). The Bayesian term is larger even though other terms are identical. The

difference is greater for a word that occurs more frequently.

2.5 Bayesian Naive Bayes Performs Worse In Prac-

tice

On one of the two data sets that we tried, we found that Bayesian NB (with a Dirichlet
prior and αk = 1 ∀k) performed worse than MAP NB (using a Dirichlet prior and
αk = 2 ∀k). This is not a sign that the Bayesian derivation is bad—far from it.
The poor empirical performance is rather an indication that the Dirichlet prior is a
poor choice or that the Dirichlet hyper-parameter settings are not well chosen. Well
estimated hyper-parameters, or a different prior, such as the Dirichlet process, may
yield better performance for Bayesian NB [Ferguson, 1973]. We show the empirical
difference and give statistics exhibiting the conditions where classification differences
occur.

We conducted classification experiments on the 20 Newsgroups and Industry Sec-
tor data sets. Table 2.1 shows empirical test error averaged over 10 test/train splits.
See appendix A for a full description of the data sets and the preparations used for
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Industry Sector Training examples per class
52 20 10 3 1

MAP 0.434 0.642 0.781 0.910 0.959
Bayesian 0.486 0.696 0.825 0.932 0.970

20 Newsgroups Training examples per class
800 250 100 30 5

MAP 0.153 0.213 0.305 0.491 0.723
Bayesian 0.154 0.211 0.302 0.490 0.726

Table 2.1: Shown are results of Naive Bayes multi-class classification using Bayesian
and MAP NB on the 20 Newsgroups and Industry Sector data sets. Errors are the
average of 10 trials. The differences in the 20 Newsgroups results are not statistically
significant. Bayesian NB has higher error rates on the Industry Sector data set.

Industry Sector Correct label
Bayesian MAP

Max. term freq. 19.4 29.3

20 Newsgroups Correct label
Bayesian MAP

Max. term freq. 6.43 17.0

Table 2.2: Shown are maximum term frequencies of test documents when the two
classification algorithms disagree. The “Bayesian” column gives the maximum fre-
quency, averaged over the test documents, when Bayesian NB gives the correct label
and MAP NB does not. “MAP” gives the statistic for the case that the MAP NB
label is correct and the Bayesian NB label is wrong. Of the disagreements, MAP is
correct when the most frequent word occurs often; Bayesian is correct when the most
frequent word occurs less often.

each. The techniques perform equally well on the 20 Newsgroups data set. Although
there are differences in the way each technique classifies documents, those differences
do not result in large differences in error. Also neither technique consistently outper-
forms the other as we vary the amount of training data.

This is not the case for the Industry Sector data set. The differences in error
between MAP and Bayesian NB are larger and one-sided; MAP NB has lower error
at all levels of training data. Additional analysis shows that in cases where Bayesian
and MAP NB don’t agree, there is a distinct difference in the frequency of words in
the test document. When MAP produces the correct label, the word with the largest
term frequency occurs more often than the word with the largest term frequency in
documents that Bayesian labels correctly. The same trend is seen in the 20 Newsgroup
results, but it does correlate with difference in error. Table 2.2 summarizes these
statistics.

Since we use αk = 1 ∀k for Bayesian NB, any word that does not occur often in a
class of training data will be over-emphasized in the classification output (compared
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to MAP NB). But, our choice of {αk} corresponds to a prior. αk = 1 corresponds to
a preference for uniform parameter vectors—vectors where all words have the same
probability. This isn’t a reasonable prior for English or other languages. A more
appropriate prior would cause only novel words to be over-emphasized.

The poor performance by Bayesian NB is not a fault of the classification algorithm,
but rather a sign that our choice of prior or model is poor. The Bayesian derivation
provides us with a classification rule that directly incorporates information from the
training data and may be more sensitive to our choice of prior. Future work to better
our choice of model and prior should improve the performance of Bayesian NB.

2.6 Naive Bayes is a Linear Classifier

MAP Naive Bayes is known to be a linear classifier. In the case of two classes, +1
and −1, the classification output is

h(d) = log
p(d|θ̂+1)p(+1)

p(d|θ̂−1)p(−1)
(2.17)

= log
p(+1)

p(−1)
+
∑
k

fk

(
log

ak +N+1
k

a+N+1
− log

ak +N−1
k

a+N−1

)
= b+

∑
k

wkfk, (2.18)

where h(d) > 0 corresponds to a +1 classification and h(d) < 0 corresponds to a
−1 classification. We use wk to represent the linear weight for the kth word in the
vocabulary. This is identical in manner to the way in which logistic regression and
linear SVMs score documents. Logistic regression classifies according to

p(y = +1|x,w) = g(b+
∑
k

wkxk), (2.19)

where p(y = +1|x,w) > 0.5 is a +1 classification and p(y = +1|x,w) < 0.5 is a −1
classification. g(z) = (1 + exp(−z))−1. Similarly, the linear SVM classifies according
to h(x) = b +

∑
k wkxk, assigning class +1 for h(x) > 0 and class −1 for h(x) < 0.

Hence, all three algorithms are operationally identical in terms of how they classify
documents. The only difference is in the way in which their weights are trained.

This similarity extends to multi-class linear classifiers. Softmax is the standard
extension of logistic regression to the linear case. Given a multi-class problem with
classes {1, . . . ,m}, Softmax computes

zi = bi +
∑
k

wikxk (2.20)

for each class and assigns probabilities p(y = i|x,w) = exp(zi)∑
j exp(zj)

. The class with

the largest zi and hence the largest probability is declared the label for example x.
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(a)

percentile min. posterior
0% 0.05012
11% 0.96486
22% 0.99987
33% 1.00000
44% 1.00000
55% 1.00000
66% 1.00000
77% 1.00000
88% 1.00000
99% 1.00000

(b)

percentile # digits
11% 1
16% 2
20% 3
24% 4
28% 5
31% 6
35% 7
38% 8
40% 9

Table 2.3: Shown are maxcp(c|D, d) values produced by MAP Naive Bayes on 20
Newsgroup data. (a) shows the smallest value at each of 11 percentile levels. Naive
Bayes produced a value of 1 on a majority of the test data. (b) shows the percentile
at which rounding any posterior to the given number of digits would produce a value
of 1. The posteriors tend to 1 rapidly.

Similarly the MAP Naive Bayes decision rule is

Ĥ(d) = argmaxi p(d|θ̂ci) (2.21)

= argmaxi
∑
k

log p(ci) + fk log
ak +N i

k

a+N i
= argmaxi

(
bi +

∑
k

wikfk

)
. (2.22)

Hence, Naive Bayes and Softmax are operationally identical. The extension of the
linear SVM to multi-class also shares this form. The only distinction between these
algorithms is in the way their weights are trained.

2.7 Naive Bayes Outputs Are Often Overconfident

Consider a pair of unfair coins. Each comes up heads 60% of the time. When we
count only the times that both coins show the same side, heads appears 69% of the
time. Coins which marginally show heads 90% of the time are heads 99% of the time
when both coins show the same side. Consider casting a spell over our 90% heads
coins so that the second coin always lands on the same side as the first. If we now
model the two coins as being independent and observe a large number of flips, we
would estimate that when both coins land on the same side, heads shows 99% of the
time. In fact, the probability of such an event is only 90%. The same effect occurs in
MAP Naive Bayes.

It is rare that words serve as exact duplicates of each other, such as in our coin
example. However, distinguishing between 20 classes requires a mere 2 word vocab-
ulary and 5 terms per document for correct classification; all remaining information
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about the class variable is either noisy or redundant. Text databases frequently have
10,000 to 100,000 distinct vocabulary words; documents often contain 100 or more
terms. Hence, there is great opportunity for duplication.

To get a sense of how much duplication there is, we trained a MAP Naive Bayes
model with 80% of the 20 Newsgroups documents. We produced p(c|d,D) (posterior)
values on the remaining 20% of the data and show statistics on maxc p(c|d,D) in
table 2.3. The values are highly overconfident. 60% of the test documents are assigned
a posterior of 1 when rounded to 9 decimal digits. Unlike logistic regression, Naive
Bayes is not optimized to produce reasonable probability values. Logistic regression
performs joint optimization of the linear coefficients, converging to the appropriate
probability values with sufficient training data. Naive Bayes optimizes the coefficients
one-by-one. It produces realistic outputs only when the independence assumption
holds true. When the features include significant duplicate information (as is usually
the case with text), the posteriors provided by Naive Bayes are highly overconfident.
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Chapter 3

Analysis of Naive Bayes Parameter
Estimates

Having an understanding of how MAP Naive Bayes parameter estimates affect clas-
sification is important. The quality of the parameter estimates directly affects per-
formance. We show that Naive Bayes estimates are consistent; we then investigate
their behavior for finite training data by analyzing their bias and variance. The bias
in the estimate is a direct product of the prior and tends monotonically toward zero
with more training data. The variance peaks when a word is expected to occur 1-2
times in the training data and falls off thereafter. This analysis shows that insufficient
training examples in one class can negatively affect overall performance. The variance
as a whole is the sum of the variances of the individual components. If a single class
variance is large, the overall variance is also high.

3.1 Consistency

MAP Naive Bayes estimates a vector of parameters, θ̂c for the multinomial model.
Each individual parameter, θ̂ck, is the estimated probability of word wk appearing in a
particular position of a class c document. Let {αk} be the parameters of the Dirichlet
prior (α =

∑
k αk), ak = αk−1 (a =

∑
k ak) and let N c

k be the number of occurrences
of word wk in the training documents (N c =

∑
kN

c
k). Then the MAP estimate for

wk is

θ̂ck =
ak +N c

k

a+N c
. (3.1)

A basic desirable property of parameter estimates is consistency, or the conver-
gence of the estimates to the true values when the amount of data used to make the
estimates grows large. Cover and Thomas describe the method of types as a way to
describe properties of empirical distributions [Cover and Thomas, 1991]. Let X be a
multinomial random variable with parameters {θck}. Let pX represent the distribution
of the parameters. Let pY represent the empirical distribution when N c samples are
taken from X resulting in counts of {N c

k}. Then, our MAP estimates are θ̂ck =
ak+Nc

k

a+Nc .
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The probability of observing such counts and hence the probability of making such
estimates is

p(θ̂c|θc) =
N c!∏
kN

c
k !

∏
k

(θck)
Nk =

N c!∏
kN

c
k !

2−N(H(pY )+D(pY ||pX)), (3.2)

The mean of our estimate is

θ̂ck =
ak +N cθck
a+N c

, (3.3)

which goes to θck as N c →∞. The variance of our estimate is

σ2
c,k =

N cθk(1− θck)
(a+N c)2

, (3.4)

which goes to zero as N c → ∞. Hence, MAP estimates are consistent; in the limit,
they are unbiased and have zero variance. So, as the size of the observed data grows
large, our estimates converge to the true parameters.

3.2 Bias

Since we never have infinite training data in practice, it is more important to under-
stand the behavior of estimates for finite training data. For a particular number of
observed words, N c, the bias in the estimate for word wk is

bias(θ̂ck) =
ak +N cθck
a+N c

− θck =
ak − aθck
a+N c

(3.5)

Hence, for words where θck >
ak
a

, the expected estimate is smaller and for θck <
ak
a

, the
expected estimate is larger than the true value. This is a natural consequence of the
choice of a Dirichlet prior. Also, bias lessens as the amount of training data grows
large.

3.3 Variance

The variance of a parameter estimate yields little insight into the effect estimates
have on classification. Since Naive Bayes is a linear classifier, a more useful variance
quantity to examine is the variance of each individual term in the classification output.
Let fk be the frequency of word k in the test document (f =

∑
k fk). Then

zc = −f log(a+N c) +
∑
k

fk log(ak +N c
k) (3.6)

is the classification score for class c. The assigned class is the one with the largest
score. The individual terms of the sum are independent (assuming N c to not be
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Figure 3-1: (a) is a plot of the pmf of log(1 +Nk) for θck = 0.0002 where N = 10000.
(b) plots the variance of log(1 + Nk) for θck = 0.0002 as we vary N . Note the x-axis
log scale. var(log(1 + Nk)) peaks when the word is expected to occur 1-2 times. (b)
is representative of all θcks. The plot of var(log(1 +Nk)) peaks near θck = 1/N and has
the same shape as the one shown.

fixed), so

var(zi) =
∑
k

f 2
kvar(log(ak +N i

k)). (3.7)

We assume the {fk} to be fixed and that the {N c
k} may vary. The variance of an

individual term is

var(log(ak +N i
k)) = E[(log(ak +N i

k)
2]− E[log(ak +N i

k)]
2. (3.8)

Treating each Nk as a binomial with parameter θck, we get

E[log(ak +N i
k)] =

∑
n

log(ak + n)

(
N

n

)
(θck)

n (1− θck)(N−n). (3.9)

Although equation 3.9 is not difficult to compute, we approximate Nk as a Poisson
with λ = θck and use Stirling’s formula for n! to arrive at

E[log(ak +N i
k)] =

Nθck log(2)

exp(Nθck)
+

N∑
n=2

log(ak + n)√
2πn

exp(n(1 + log(Nθck)− log n)−Nθck).

(3.10)

We use this formula for the graphs that we present. The Poisson approximation is
good for θck << 1, which is generally the case in text.

Figure 3-1 shows plots of the the pmf and variance for a word with θck = 0.0002.
var(log(1 +Nk)) is maximized when wk is expected to occur 1-2 times in the training
data. This does not incorporate fk; a word that occurs 1-2 times in the training data
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Figure 3-2: Shown is the per-word variance contribution to the classification output
for N = 1000000, f = 300 and various values of θck . We assume that fk = fθck.
Although var(log(1 +Nk)) is largest for θck = 0.000001, larger values of θck yield larger
per-word variance contributions.

for class c is unlikely to occur in test documents generated from class c. However,
figure 3-1 does give us the ability to compare variances across classes. Let θ+1

k = 0.02
and θ−1

k = 0.0002 be the true parameters for wk for the classes +1 and −1. If the
training data for both classes consists of 10,000 words, N+1 = N−1 = 10, 000 then
the wk contribution to the variance of the classification output will be much greater
for class −1 than for class +1.

Figure 3-2 shows the variance contribution of individual tokens assuming that
fk = fθck. Words with the largest θck contribute the largest variance to the classifi-
cation output. fk ≈ fθck is only reasonable for class-independent words and for test
documents drawn from class c. Words with large θck values often contribute the great-
est amount of variance to classification outputs, but, a word with small θck can easily
contribute a great deal of variance if wk occurs frequently in the test document.

We can glean from figure 3-1 the effect of additional training data on classification.
It is widely believed that additional training data improves classification. The plot
of the variance of log(1 +Nk) shows that for every word, there is a point after which
the variance contribution for that word diminishes with additional training data.
Once that point is passed for most words, the overall variance in the classification
output decreases monotonically. Before this point, output variance may increase with
additional training data, but when the amount of training data is relatively small, bias
is a significant factor. For N = 1000 and a word with θck = 0.00002, the estimate may

be θ̂ck = 0.0001, five times the actual parameter value. When the amount of training
data is very small, bias plays a greater role in affecting classification performance.
Our analysis of variance shows that after a point variance decreases monotonically
for each word. This lessening of variance contributes to improved classification as the
number of training examples increases.
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category word log-odds ratio θ̂k
alt.atheism atheism 0.013 0.0040
comp.graphics jpeg 0.037 0.0073
comp.os.ms-windows.misc windows 0.043 0.020
comp.sys.ibm.pc.hardware scsi 0.033 0.012
comp.sys.mac.hardware mac 0.024 0.012
comp.windows.x window 0.024 0.0091
misc.forsale sale 0.018 0.0076
rec.autos car 0.043 0.017
rec.motorcycles bike 0.045 0.010
rec.sport.baseball baseball 0.016 0.0057
rec.sport.hockey hockey 0.037 0.0078
sci.crypt clipper 0.033 0.0058
sci.electronics circuit 0.010 0.0031
sci.med patients 0.011 0.0029
sci.space space 0.035 0.013
soc.religion.christian god 0.035 0.018
talk.politics.guns gun 0.028 0.0094
talk.politics.mideast armenian 0.039 0.0057
talk.politics.misc stephanopoulos 0.024 0.0034
talk.religion.misc god 0.011 0.011

Table 3.1: For each category in the 20 Newsgroups dataset, the word with the highest
log odds ratio. A larger score indicates a word which is commonly found in the
specified category, but rarely found in other categories. Words with high log odds
ratios are good discriminants for the one vs. all problem.

3.4 The Danger of Imbalanced Class Training Data

An observation we can make from figure 3-1 is that classes with little observed training
data (e.g. 5 documents of 200 words each, N = 1000) yield high-variance outputs.
Few words that are useful for classification have θck > 0.01. Table 3.1 gives a list of
frequent, class-predictive words for the 20 Newsgroups data set. It gives a sense of
the frequency with which words occur. The table shows the word with the greatest
log-odds ratio for each class in the 20 Newsgroups data set. We define a log-odds
ratio as

LogOdds(wk|ci) = p(wk|ci) log
p(wk|ci)
p(wk|¬ci)

= θik log
θik∑
j 6=i θ

j
k

. (3.11)

Words with high log-odds ratio occur unusually frequently in class i and occur often
within that class.

For N = 1000, words with θck ∈ (0.01, 0.0001) correspond to var(log(1 + Nk)) ≥
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0.05, all relatively large variances. In contrast, when N = 10000, var(log(1 +Nk)) <
0.01 for θck = 0.01. Larger amounts of observed data yield even smaller variances for
words that occur frequently. Hence, if one class has little training data, its variance
may be much greater than other classes.

Theorem 3.4.1 Consider a two-class (+1, −1) classification problem. Let
z+1(d) = log p(d|θ̂+1)p(+1) and z−1(d) = log p(d|θ̂−1)p(−1). Assume that var(z+1(d)) >
var(z−1(d)). Then 2var(z+1(d)) > var(h(d)) > var(z+1(d)).

Proof: h(d) = log p(d|θ̂+1)p(+1)− log p(d|θ̂−1)p(−1) (as given in equation 2.18).
Since the two terms are independent, the variance of h(d) is the sum of the variances
of the two terms. 2

If one class has much higher variance than other classes, that variance will domi-
nate the variance of the overall classification outputs. Ample training data will yield
estimates that contribute little variance to the overall output; a dearth of examples
in one class will contribute great variance. Hence, the performance of a Naive Bayes
classifier can easily be dictated by the class with the smallest number of examples.
The benefit that Naive Bayes receives from additional training data is marginal if the
data is not distributed evenly across the classes.
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Chapter 4

Error-correcting Output Coding

Error-correcting output coding (ECOC) is an approach for solving multiclass catego-
rization problems originally introduced by Dietterich and Bakiri [1991]. It reduces the
multiclass problem to a group of binary classification tasks and combines the binary
classification results to predict multiclass labels. Others have experimentally shown
that ECOC can improve text classification with Naive Bayes [Ghani, 2000] [Berger,
1999]. Here, we give detailed results on the 20 Newsgroups and Industry Sector data
sets. We explain how our parameter estimate analysis predicts the success and failure
of (MAP) Naive Bayes and its use in conjunction with ECOC. Certain ECOC classi-
fiers outperform Naive Bayes. The performance of the binary classifiers in the ECOC
scheme has a great impact on multiclass performance. Those that perform well do
not suffer from too few examples and have relatively good binary performance. Addi-
tionally, we experiment with a linear loss function and find that it yields performance
comparable to that of the best non-linear loss function that we tried. This is evidence
that text classification using a bag-of-words representation is a linear problem. Note
that throughout this section when we say “Naive Bayes,” we are referring to MAP
Naive Bayes with Dirichlet hyper-parameters αk = 2 ∀k.

4.1 Introduction

R is the code matrix. It defines the data splits which the binary classifier is to learn.
Ri· is the ith row of the matrix and defines the code for class i. R·j is the jth column of
the matrix and defines a split for the classifier to learn. R ∈ {−1,+1}m × {−1,+1}l
where m is the number of classes and l is the number of partitionings (or length
of each code). In a particular column, R·j, −1 and +1 represent the assignment
of the classes to one of two partitions. For this work, we use three different ma-
trices, the one-vs-all (OVA) matrix, where each column has one +1 and is other-
wise filled with −1 entries, the Dense matrix, where entries are independently de-
termined by flipping a fair coin, assigning +1 for heads and −1 for tails and BCH
codes, a matrix construction technique that yields high column- and row-separation
[Ghani, 2000]. We use the BCH codes that Ghani has made available on-line at
http://www.cs.cmu.edu/∼rayid/ecoc.c
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Let (f1, . . . , fl) be the classifiers trained on the partitionings indicated in the code
matrix. Furthermore, let g : < → < be the chosen loss function. Then, the multiclass
classification of a new example, x is

argminc∈{1,...,m}

l∑
i=1

g(fi(x)Rci). (4.1)

Allwein et al. give a full description of the code matrix classification framework and
give loss functions for various models [2000]. We use “hinge” loss, g(z) = (1 − z)+,
for the SVM, since that is the loss function for which the SVM is optimized. Unlike
the SVM, Naive Bayes does not optimize a loss function. However, we find that the
hinge loss function yields lower error than the 0/1 and logistic loss functions, so we
use the hinge loss for our Naive Bayes ECOC classifier as well.

4.2 Additive Models

ECOC resides within a greater class of models known as additive models. An additive
model for classification has the form

argminc∈{1,...,m}

l∑
i=1

wific(x), (4.2)

where fic(x) is an arbitrary function of the data and the wi are weights. ECOC uses
uniform (wi = 1 ∀i) weights. The name comes from the fact that the final output
is determined by a (weighted) summing of outputs of possibly non-linear functions.
All algorithms which determine their final output by voting fall into this class of
algorithms. In fact, an effective way to make use of a collection of experts is to have
them vote. This is very similar to how ECOC works. It creates a handful of experts,
each of which specializes at partitioning the set of classes in a particular way. ECOC
allows each expert to vote for the set of classes within which it believes the example
to lie. With non-binary loss functions, these votes are weighted by the confidence
of the expert. The additive aspect imposes a linear constraint on the final output.
This restricts the expressiveness of the output (as a function of the experts), but also
tempers the final output. However, there is no overall constraint on the expressiveness
of the classifier (so long as the experts are sufficiently expressive).

4.2.1 The relation to boosting

Some algorithms, such as logistic regression, softmax, the linear SVM, its multiclass
extension and MAP Naive Bayes are trivially additive models because they are linear
classifiers. The loss function in ECOC may make it non-linear even when the individ-
ual classifiers are linear. Another model which is a non-linear additive model is boost-
ing. Boosting shares a similarity with ECOC: it is composed of separately-trained
binary classifiers. The original formulation of boosting, AdaBoost, was designed to
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perform only binary classification [Freund and Schapire, 1999]. AdaBoost composes
binary classifiers which are experts at different parts of the example space by training
each classifier with a different weighted set of examples. In the multiclass case, the
creation of experts can be done by partitioning according to class and/or weight-
ing the individual examples. ECOC only specifies a partitioning according to class,
whereas multiclass boosting schemes (such as AdaBoost.OC and AdaBoost.ECC)
specify partitionings of both the classes and the example space [Freund and Schapire,
1996] [Guruswami and Sahal, 1999]. Multiclass boosting and ECOC are closely re-
lated: multiclass boosting is an extension of ECOC. Multiclass boosting specifies a
particular binary learner (although the underlying weak learner is unspecified) and
imposes weights on the loss output of each binary learner. Also, multiclass boost-
ing algorithms train binary classifiers as a function of previous classifiers. This is
not usually done with ECOC. However, a main thrust of Boosting is its creation of
various meaningful binary sub-problems. In the multiclass case, ECOC does this by
partitioning examples according to class. The classes give meaningful locations in
which to draw boundaries. It is not clear that multiclass boosting schemes offer any
advantage over a strong binary classifier being used with ECOC.

4.3 The Support Vector Machine

The Support Vector Machine is a classifier, originally proposed by Vapnik, that finds a
maximal margin separating hyperplane between two classes of data [1995]. There are
non-linear extensions to the SVM, but Yang found the linear kernel to outperform
non-linear kernels in text classification. In our own informal experiments, we also
found that linear performs at least as well as non-linear kernels. Hence, we only
present linear SVM results. We use the SMART ‘ltc’ transform and use the SvmFu
package for running experiments [Rifkin, 2000].

We introduce the SVM and show results on the SVM to contrast the Naive Bayes
performance. The SVM is known to perform well in the case of imbalanced training
data, whereas theorem 3.4.1 gives us reason to believe that Naive Bayes does not
handle imbalanced training data well. The SVM results give us a baseline with which
to grade Naive Bayes’ performance.

4.4 Experiments

Table 4.1 shows the results of our ECOC experiments. Appendix A describes the
preparations we used for each data set. All of our results are averaged over 10 random
train/test splits of the data. The SVM consistently performs better than Naive Bayes
as the binary classifier of an ECOC scheme. But, the degree of difference depends
both on the matrix type and the data set.
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20 Newsgroups 800 250 100 30
SVM NB SVM NB SVM NB SVM NB

OVA 0.131 0.146 0.167 0.199 0.214 0.277 0.311 0.445
Dense 15 0.142 0.176 0.193 0.222 0.251 0.282 0.366 0.431
BCH 15 0.145 0.169 0.196 0.225 0.262 0.311 0.415 0.520
Dense 31 0.135 0.168 0.180 0.214 0.233 0.276 0.348 0.428
BCH 31 0.131 0.153 0.173 0.198 0.224 0.259 0.333 0.438
Dense 63 0.129 0.154 0.171 0.198 0.222 0.256 0.326 0.407
BCH 63 0.125 0.145 0.164 0.188 0.213 0.245 0.312 0.390

Industry Sector 52 20 10 3
SVM NB SVM NB SVM NB SVM NB

OVA 0.072 0.357 0.176 0.568 0.341 0.725 0.650 0.885
Dense 15 0.119 0.191 0.283 0.363 0.461 0.542 0.738 0.805
BCH 15 0.106 0.182 0.261 0.352 0.438 0.518 0.717 0.771
Dense 31 0.083 0.145 0.216 0.301 0.394 0.482 0.701 0.769
BCH 31 0.076 0.140 0.198 0.292 0.371 0.462 0.676 0.743
Dense 63 0.072 0.135 0.189 0.279 0.363 0.453 0.674 0.745
BCH 63 0.067 0.128 0.176 0.272 0.343 0.443 0.653 0.734

Table 4.1: Above are results of multiclass classification experiments on the 20 News-
groups (top) and Industry Sector (bottom) data sets. The top row of each table
indicates the number of documents/class used for training. The second row indicates
the binary classifier. The far left column indicates the multiclass technique. Entries
in the table are classification error. We thank Ryan Rifkin for providing us with the
SVM results.
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Figure 4-1: Shown are multiclass errors for three different classification algorithms.
OVA refers to ECOC with the one-vs-all matrix. BCH refers to ECOC with the
BCH-63 matrix. Naive Bayes is used as the binary classifier for both OVA and BCH
in this plot. NB refers to regular Naive Bayes. Note that OVA and NB follow similar
trends; OVA outperforms NB by a small margin. BCH greatly outperforms OVA and
NB on Industry Sector but only marginally outperforms them on 20 Newsgroups.
Note the log scale on both axes.

4.4.1 The success and failure of Naive Bayes

Figure 4-1 compares the performance of ECOC/OVA with regular NB and ECOC/BCH.
Note that across both data sets, the performance of ECOC/OVA and regular NB fol-
lows a consistent pattern across different train set sizes: regular NB consistently
performs slightly worse than ECOC/OVA. This harkens back to Berger’s claim that
ECOC/OVA classification with Naive Bayes is very similar to regular Naive Bayes
classification [Berger, 1999]. In fact, the “one” components of the binary classifiers
are simply the individual components of the regular Naive Bayes classifier. OVA adds
outputs to compare against (the “all”). This additional information allows OVA to
outperform NB somewhat. OVA is innately tied to the performance of regular Naive
Bayes. But, what causes regular Naive Bayes to perform poorly?

To understand the performance of regular Naive Bayes, we return to theorem 3.4.1.
Theorem 3.4.1 gives us the intuition that a regular Naive Bayes classifier is only good
as its worst component. Also, since additional training examples reduce variance
in a Naive Bayes classifier, the class with the fewest examples is likely to dictate
the performance of the overall classifier. Unlike 20 Newsgroups, the training data in
Industry Sector is not even across classes. The class with the fewest training examples
has 12. The class with the most has 52 training examples. For the “52” and “20”
training levels, some classes use fewer than 52 and 20 training examples, respectively.
This correlates well with the improved performance of ECOC/BCH in figure 4-1. The
BCH matrix shows the greatest gains over OVA and NB when the largest number
of training examples is used. This is the case where there is the largest disparity
in number of training examples used for different classes and is also the case where
theorem 3.4.1 is most applicable.
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Figure 4-2: Multiclass error improves as the number of training examples increases,
but binary error improves marginally for Industry Sector and degrades for 20 News-
groups. Shown is the performance of ECOC with OVA and Naive Bayes as the
binary classifier. Since the OVA binary classifiers have a lop-sided example distribu-
tion, guessing achieves a binary error of 0.05 for 20 Newsgroups and 0.01 for Industry
Sector. Binary error is only loosely tied to binary classifier strength. Note the log
scale on both axes.

Guess
+1 −1

True +1 tp fn
Label −1 fp tn

Table 4.2: The performance of a binary classifier can be described with a 2x2 confusion
matrix, as shown. Two letters describe each entry. “t” stands for true. “f” is false.
“p” is positive. “n” is negative. The detection rate is tp/(tp+fn). The false alarm
rate is fn/(tp+fn). The miss rate is fp/(tn+fp). ROC breakeven is the average of the
alarm and miss rates when the difference between them is minimized.

4.4.2 Multiclass error is a function of binary performance

The performance of an ECOC classifier is affected by a number of factors: (1) bi-
nary classifier performance, (2) independence of the binary classifiers, and (3) the
loss function. Of these, we find binary performance to be the most influential in
multiclass text classification. We use error to measure multiclass performance. How-
ever, we avoid binary error as a measure of binary performance. Figure 4-2 shows
why. Additional training examples yields improved multiclass error, but binary error
rises and then falls using 800 training examples/class on the 20 Newsgroups data
set. The OVA matrix partitions examples very unevenly, assigning most examples
to a single class. Hence, error mainly judges the classifiers performance on examples
of that class. A better measure is one that evenly weights performance on the two
classes. We propose ROC breakeven as such a measure. Table 4.2 shows terms used
to describe the output of a classifier. We define the ROC breakeven as the average of
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Figure 4-3: Shown is a comparison between ROC breakeven and multiclass error of
ECOC using a BCH-63 matrix and the SVM and Naive Bayes as the binary classifier.
We see that ROC breakeven largely dictates multiclass error. Trends in the ROC
breakeven curves are reflected in the multiclass error curves. The maximum number
of examples/class is used. Note the log scale on both axes.

the miss and false alarm rates at the point where the difference between false alarm
rate and the miss rate is minimum. Note that unlike precision-recall breakeven, the
ROC breakeven is always achievable. We achieve different rates by modifying the bias
term of the classifier. ROC breakeven selects the bias such that the classifier performs
as well on examples of class +1 as examples of class −1. ROC breakeven allows us
to better judge the strength of a binary classifier when the example distribution is
uneven. When the example distribution is even, ROC breakeven is nearly identical
to binary error.

Figure 4-3 gives a comparison between multiclass error and ROC breakeven for
ECOC classification with a BCH-63 matrix. The SVM achieves lower ROC breakeven
on both data set and correspondingly achieves lower multiclass error. The figure
makes the relationship between ROC breakeven and multiclass error clear. On 20
Newsgroups, there is a relatively consistent relationship between SVM and NB ROC
breakeven. The gap between the two remains constant as the number of training
examples increases. This is mirrored in the multiclass error. The SVM outperforms
NB by a consistent margin. On Industry Sector, ROC breakeven is close at 3 training
examples/class, but quickly diverges. Multiclass error shows the same pattern. SVM
and NB multiclass errors are close at 3 examples/class, but at 52 examples/class,
the SVM multiclass error is just over half that of the NB multiclass error. The
performance of the binary classifier has great impact on the multiclass performance.

The trends seen in ECOC classification with a BCH-63 matrix are repeated in the
OVA matrix results. Figure 4-4 shows these results. On Industry Sector, SVM ROC
breakeven improves more quickly than NB ROC breakeven as the number of training
examples increases. Multiclass error follows in suit, decreasing to an error of 0.072 at
a binary ROC breakeven of 0.036. Naive Bayes lags behind with a multiclass error of
0.357 at a binary ROC breakeven of 0.282. The results on 20 Newsgroups are similar,
although large differences in binary ROC have less of an effect on multiclass error.
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Figure 4-4: Shown is ROC breakeven and multiclass error for ECOC with the OVA
matrix. Changes in ROC breakeven are directly reflected in multiclass error. Multi-
class error changes gradually for 20 Newsgroups, but trends in ROC breakeven are
evident in the multiclass error. The maximum number of examples/class is used.
Note the log scale on both axes.

Lower ROC breakeven yields lower multiclass error and as the ROC breakevens of
the SVM and NB converge, so do their multiclass errors.

The plots in figure 4-4 show that there are clearly factors other than binary per-
formance at work. For example, an ROC breakeven of 0.282 for Naive Bayes on
the Industry Sector data set (52 examples/class) yields a multiclass error of 0.357,
while an ROC breakeven of 0.264 for the SVM (3 examples) yields multiclass error of
0.650. The SVM has higher multiclass error even though its ROC breakeven is lower.
This is due to correlation between binary classifiers. When there are only 3 exam-
ples/class, the SVM classifiers produce identical labels more often than when more
training data is available. For example, on average, a pair of 3 example SVM binary
classifiers (trained using an OVA split of the data) produce the same label 99.77% of
the time. The average pair of NB binary classifiers trained with 52 examples produce
the same label 99.54% of the time. Greater independence between classifiers allows
lower multiclass error in an ECOC scheme when the binary classifiers show higher
ROC breakeven scores.

The full binary error and ROC breakeven results can be found in table 4.3. As
we have seen in the figures and as can be seen in the table, ROC breakeven is well
correlated with multiclass error. Other factors are at work—identical NB and SVM
ROC breakevens does not yield identical multiclass errors. However, trends in ROC
breakeven are clearly reflected in multiclass error. This is not the case with binary
error, at least for the OVA matrix (where ROC breakeven and binary error differ).
ROC breakeven is clearly a good indicator of multiclass performance as it better
judges the strength of the classifier when the example distribution is skewed.
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20 Newsgroups 800 250 100 30
SVM NB SVM NB SVM NB SVM NB

OVA/Error 0.015 0.039 0.021 0.027 0.03 0.042 0.044 0.049
OVA/ROC 0.043 0.059 0.059 0.146 0.078 0.262 0.118 0.375
BCH/Error 0.079 0.101 0.105 0.121 0.135 0.151 0.194 0.224
BCH/ROC 0.081 0.101 0.108 0.127 0.138 0.163 0.193 0.237

Industry Sector 52 20 10 3
SVM NB SVM NB SVM NB SVM NB

OVA/Error 0.003 0.008 0.005 0.009 0.007 0.009 0.009 0.010
OVA/ROC 0.036 0.282 0.075 0.378 0.141 0.428 0.264 0.473
BCH/Error 0.062 0.100 0.137 0.176 0.218 0.253 0.347 0.376
BCH/ROC 0.063 0.099 0.137 0.175 0.219 0.253 0.348 0.378

Table 4.3: Shown are binary errors and ROC breakeven points for the binary classifiers
trained according to the matrix columns. Results for the Dense matrix are omitted
since they are nearly identical to the BCH results. Table entries are averaged over all
matrix columns and 10 train/test splits. Error is a poor judge of classifier strength
for the OVA matrix. Error increases with more examples on 20 Newsgroups. Note
that error and ROC breakeven numbers are very similar for the BCH matrix.

20 Newsgroups Hinge Linear
OVA/SVM 0.131 0.131
OVA/NB 0.146 0.146
BCH 63/SVM 0.125 0.126
BCH 63/NB 0.145 0.144

Industry Sector Hinge Linear
OVA/SVM 0.072 0.072
OVA/NB 0.357 0.357
BCH 63/SVM 0.067 0.067
BCH 63/NB 0.128 0.127

Table 4.4: Shown are multiclass errors on two data sets and a variety of ECOC
classifiers. Errors are nearly identical between the hinge and linear loss functions.
Although ECOC provides opportunity for non-linear decision rules through the loss
function, the use of a non-linear loss function provides no practical benefit.
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4.4.3 Non-linear loss does not affect ECOC performance

Another factor which can greatly impact ECOC multiclass error is the loss function.
We use the hinge function for our experiments, g(z) = (1−z)+, which exhibits a non-
linearity at z = 1. Using this loss function allows ECOC to express functions that
linear classifiers, such as Naive Bayes and the linear SVM, cannot express. However,
the fact that ECOC is non-linear does not provide empirical benefit, at least in our
experiments. Table 4.4 shows results of experiments that we ran to compare the
hinge loss function to a trivial linear loss function, g(z) = −z. We find practically no
difference in multiclass error compared to using the hinge loss function. The results
we show use the maximum number of training examples (up to 52/class for Industry
Sector and 800/class for 20 Newsgroups), but results are similar when fewer training
examples are used. The confidence information contributed by the loss function is
important for text classification, but non-linearity provides no practical benefit. The
linear loss function yields a completely linear system (since both our NB and SVM
classifiers are linear). This contributes evidence that text classification with bag-of-
words representation is a linear problem.
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Chapter 5

Feature Selection

Feature selection is an essential part of text classification. Document collections have
10,000 to 100,000 or more unique words. Many words are not useful for classification.
Restricting the set of words that are used for classification makes classification more
efficient and can improve generalization error. We describe how the application of In-
formation Gain to feature selection for multiclass text classification is fundamentally
flawed and compare it to a statistics-based algorithm which exhibits similar difficul-
ties. A text feature selection algorithm should select features that are likely to be
drawn from a distribution which is distant from a class-neutral distribution. Neither
of the two algorithms do this. We describe a framework for feature selection that
encapsulates this notion and exposes the free parameters which are inherent in text
feature selection. Our framework provides a basis for new feature selection algorithms
and clarifies the intent and design of such algorithms.

5.1 Information Gain

Information gain (IG) is a commonly used score for selecting words for text clas-
sification [Joachims, 1997; McCallum and Nigam, 1998; Yang and Pedersen, 1997;
Mitchell, 1997]. It is derived from information theoretic notions. For each word,
IG measures the entropy difference between the unconditioned class variable and the
class variable conditioned on the presence or absence of the word,

IG = H(C)−H(C|Wk) =
∑
c∈C

∑
wk∈{0,1}

p(c, wk) log
p(c|wk)
p(c)

. (5.1)

This score is equivalent to the mutual information between the class and word vari-
ables, IG = I(C;Wk). Hence, this score is sometimes called mutual information. The
probabilities correspond to individual word occurrences. wk = 1 corresponds to the
occurrence of word wk. wk = 0 corresponds to the occurrence of some other word.
We treat every token in the data as a binomial event and estimate the probabilities in
equation 5.1 via maximum likelihood. Let f ck be the number of occurrences of word
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wk in class c (fk =
∑

c f
c
k). Let N c =

∑
k f

c
k (N =

∑
cN

c). Then

IG =
∑
c∈C

f ck/N log
f ck/fk
N c/N

+ (N c − f ck)/N log
(N c − f ck)/(N − fk)

N c/N
. (5.2)

For feature selection, IG is computed for every word and words with larger scores are
retained.

5.2 Hypothesis Testing

A desirable property of a feature is for its distribution to be highly dependent on the
class. Words that occur independent of the class give no information for classifica-
tion. A natural approach to developing a metric for filtering features is to determine
whether each word has a class-independent distribution and to eliminate the word if
it has such a distribution. In statistics, the problem of determining whether data is
generated from a particular distribution is known as hypothesis testing. One proposes
a model and parameters and ranks data according to its likelihood.

For text feature selection, we call this feature selection score HT. We consider a
single word, wk, and treat its fk appearances in the training data as fk draws from a
multinomial where each event is a class label. Our hypothesized parameters are p̃ =
{N c/N}. These parameters correspond to word occurrence being irrelevant of class,
i.e. θ1

k = · · · = θmk in the multinomial model. Our test statistic, which determines the
ordering of data, is the difference in log-likelihoods between a maximum likelihood
estimate, p̂ = {f ck/fk}, and the hypothesized parameters,

HT (p̂, p̃) = 2[l(p̂)− l(p̃)] = 2
∑
c

f ck log
f ck/fk
N c/N

. (5.3)

HT > 0 always and larger HT values correspond to data that is less likely to have
been generated by the proposed model. We keep words with large HT values and
discard words with small HT values. Note that this score is similar to the IG score.

5.3 The Generalization Advantage of Significance

Level

It is common for feature selection to be performed in terms of the number of features.
For example, when using the IG score, one does not usually select an IG cutoff and
eliminate all words with IG score less than that. Rather, one ranks words by their IG
score and retains the top N scoring words. However, the number of words that should
be retained for a particular application varies by data set. For example, McCallum
and Nigam found that the best multinomial classification accuracy for the 20 News-
groups data set was achieved using the entire vocabulary (62,000+ words) [1998]. In
contrast, they found that the best multinomial performance on the “interest” cate-
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gory of the Reuters data set was achieved using about 50 words. An advantage of
the HT score is that the number of words to be selected can be specified in terms of
a significance level. Let HTcut be the chosen cutoff HT score. The significance level
corresponding to HTcut is

SL = Pr{HT (p̂, p̃) ≥ HTcut| p̂ is a sample estimate of p̃}. (5.4)

p̃ is fixed; p̂ is variable. SL = 0.10 selects words with empirical distributions that oc-
cur in only 10% of draws from the hypothesis distribution; selected words are atypical
of the class-neutral distribution. This is more intuitive than simply selecting an HT
or IG cutoff and may allow generalization across different data sets and conditions.
Using significance level to choose a number of words for feature selection gives an
easy-to-interpret understanding of what words are retained.

5.4 The Undesirable Properties of IG and HT

The application of IG and HT to text classification ignores critical aspects of text.
Most words occur sparsely and only provide information when they occur. IG expects
a word to provide information when it does not occur. Both IG and HT have a
tendency to give higher scores to words that occur more often. For example, if
p̃ = {1/2, 1/2}, p̂ = {2/5, 3/5} and fk = 10000, HT ≈ 201.3. More than 99.9% of
draws from p̃ have a HT score less than 201.3. However, words which are devoid of
class information have such empirical distributions. They are given a high score by
IG and HT because they provide a significant reduction in entropy and there is little
chance that they could have been drawn from the hypothesis distribution. The fact
that the true distribution is probably very close to the hypothesized distribution is
ignored by IG and HT. A word that occurs just a few times (e.g. fk = 7) can never
have a high IG or HT score because its non-occurrences provide little information and
since the most extreme empirical distribution is a relatively common draw from the
hypothesis distribution. For example, the chance of observing p̂ = {1, 0} or p̂ = {0, 1}
from 7 draws of a multinomial with parameters p̃ = {1/2, 1/2} is 2/27 ≈ 0.0156.

The appearance of a single word can sometimes be used to predict the class (e.g.
“Garciaparra” in a “baseball” document). However, a non-appearance is rarely in-
formative (e.g. “Garciaparra” won’t appear in all “baseball” documents). A text
feature selection algorithm should retain words whose appearance is probably highly
predictive of the class. In this sense, we want words that are discriminative.

5.5 Simple Discriminative Feature Selection

A simple score for selecting discriminative features is

S = argmaxc p(c|wk), (5.5)
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p = {1/2,1/2}

p = {1,0}

ε
p = {2/3,1/3}

p = {8/9,1/9}

p = {5/6,1/6}

Figure 5-1: Our new feature selection framework views text feature selection as a
problem of finding words (their empirical distribution represented by p̂) which are
unlikely to have a true distribution, p, within ε of the class independent distribution,
p̃. The dashed arrows point to distributions from which p̂ could have been drawn.

where p(c|wk) is the probability of the class being c given the appearance of word
wk. This gives the largest score to words which only appear in a single class. If such
a word appears in a document, we know without a doubt what class that document
belongs to. We cannot find p(c|wk), but we can make an estimate of it based on p̂.
A MAP estimate with Dirichlet {αc = 2} prior gives us

S = argmaxc
f ck + 1

fk +m
. (5.6)

The setting of these hyper-parameters encode a preference for the uniform distribu-
tion, but there is no reason to believe that other choices are not more appropriate.
The choice of prior is important as it serves as a measure of confidence for the empir-
ical distribution. If the prior is a Dirichlet that prefers the class-neutral distribution
over all others, {αc = cN c/N}, the estimate of p for a word lies on the line connecting
p̂ and p̃. The prior dictates how close to p̃ the estimate is for a given number of draws.

5.6 A New Feature Selection Framework

The simple score we describe selects discriminative features, but is limiting as it
imposes a specific distance metric. We describe a framework for text feature selection
that exposes parameters of a feature selection method which are not always made
explicit.

Figure 5-1 gives a visual description of this framework. To develop the frame-
work, we extend HT in two important ways. First, we introduce an ε-ball around
the hypothesis distribution. This serves to define distributions that are nearly class-
independent. Second, we define a metric for measuring distances between distribu-
tions. This is used to determine the distribution in the ε-ball which is nearest to the
empirical distribution. Let pnear be the distribution within the ε-ball which is nearest
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to p̂. HT judges the possibility of p̂ being drawn from p̃. In the new framework,
we evaluate the probability of p̂ being drawn from pnear. We select words that are
likely to have distributions outside of the ε-ball—distributions which are far from
the class-independent distribution. So, the new feature selection framework has as
parameters

• ε, to define a set of distributions close to p̃,

• a metric, d(p, q), to determine pnear, and

• a significance level, SL, for comparing empirical and true distributions.

As before, we use a hypothesis test score to define significance level,

NHT (p̂, pnear) = 2[l(p̂)− l(pnear)]. (5.7)

Given a cutoff choice for NHT, the significance level is defined as

SL = Pr{NHT (p̂, pnear) > NHTcut| p̂ is a sample estimate of pnear}. (5.8)

A word (p̂) is selected iff NHT (p̂, pnear) > NHTcut where NHTcut is defined by the
chosen significance level and pnear is the distribution in the ε-ball that is closest to p̂
(defined by d(p̃, pnear)). Since words with empirical distributions near p̃ are discarded,
a smaller cutoff and larger significance level can be used. Thus, NHT will include
more discriminative words than IG or HT for the same number of selected features.

This new framework exposes the fundamental parameters variables in a text fea-
ture selection scheme where only word appearances are used. ε compensates for the
fact that words are not truly drawn from a multinomial by eliminating words that
are close to the class-neutral distribution. SL allows the user to select the amount of
evidence required to show that a word is not drawn from a class-neutral distribution.
d(p, q) defines the closeness of two distributions and specifies (along with ε) to which
distribution empirical distributions should be compared. This new framework selects
words that are likely to be drawn from a discriminative distribution. Unlike HT and
IG, it accounts for the fact that text is not a multinomial and empirical distributions
that are close to the class-neutral distribution are unlikely to be informative with
respect to the class variable.
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Chapter 6

Conclusion

The focus of this thesis has been the application of Naive Bayes to multiclass text clas-
sification and has resulted in several new insights. Our parameter estimate analysis
shows that Naive Bayes performs poorly when one class has relatively few examples.
We also empirically showed that ECOC performance is mainly a result of binary
performance. When the binary classifiers in ECOC have sufficient examples, ECOC
performs much better than regular Naive Bayes. Furthermore, we showed that a
commonly-used text feature selection algorithm is not good for multiclass text clas-
sification because it judges words by their non-appearances and has a bias to words
that appear often. We proposed to select features by whether or not their distribution
is discriminative and gave a framework which exposes the free parameters in such a
scheme.

In terms of future work, the choice of the prior can greatly affect classification,
especially for words with few observations, but its choice is not well understood. Bet-
ter selection of the prior may lead to improved classification performance. Moreover,
we along with others have observed that linear classifiers perform as well or better
than non-linear classifiers on text classification with a bag-of-words representation.
Determining whether this is generally true and understanding why this is the case is
important. In our ECOC experiments, the performance of a particular matrix var-
ied by data set and the amount of training data. Additional gains may be possible
by developing algorithms to successively tune the columns of the ECOC matrix to
the specific problem. We also envision to be able to use unlabeled data with EM to
counter the limiting effect of classes with only a few labeled examples.
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Appendix A

Data Sets

For our experiments, we use two different commonly used data sets [McCallum and
Nigam, 1998; Slonim and Tishby, 1999; Berger, 1999; Ghani, 2000].We use McCal-
lum’s rainbow to pre-process the documents [1996].

20 Newsgroups is a data set collected and originally used for text classification
by Lang [1995b] [Lang, 1995a]. It contains 19,974 non-empty documents evenly dis-
tributed across 20 categories, each representing a newsgroup. We remove all headers,
UU-encoded blocks and words which occur only once in the data. The vocabulary
size is 62061. We randomly select 80% of documents per class for training and the
remaining 20% for testing. This is the same pre-processing and splitting as McCallum
and Nigam used in their 20 Newsgroups experiments [McCallum and Nigam, 1998].

The Industry Sector data is a collection of corporate web pages organized into
categories based on what a company produces or does [Nigam, 2000]. There are 9619
non-empty documents and 105 categories. We remove headers, prune stoplist words
and words that occur only once. We include HTML for our experiments. However,
we find that regular Naive Bayes and ECOC with OVA and Naive Bayes do better
when HTML is first removed. The difference does not change our conclusions, but
is of note. Our vocabulary size is 55197. We randomly select 50% of documents per
class for training and the remaining 50% for testing. We create subsets of the training
set to observe the effects of varying amounts of training data. This is similar to the
pre-processing and splitting as Ghani used in his Industry Sector experiments [Ghani,
2000]. The only difference is that Ghani excluded HTML in his pre-processing.

Text classification experiments often include a feature selection step which may
improve classification. McCallum and Nigam performed feature selection experiments
on a modified version of the Industry Sector data set and the 20 Newsgroups data
set; in neither case did feature selection significantly improve classification [1998].
In our own experiments, we found information gain feature selection to not improve
classification. We use the full vocabulary for all of our experiments.
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