
ifile: An Application of Machine Learning to
EMail Filtering ∗

Jason D. M. Rennie
Artificial Intelligence Lab

Massachusetts Institute of Technology
Cambridge, MA 02139

jrennie@ai.mit.edu

ABSTRACT
The rise of the World Wide Web and the ever-increasing
amounts of machine-readable text has caused text classifica-
tion to become a important aspect of machine learning. One
specific application that has the potential to affect almost
every user of the Internet is e-mail filtering. The WorldTalk
Corporation estimates that over 60 million business people
use e-mail [6]. Many more use e-mail purely on a personal
basis and the pool of e-mail users is growing daily. And yet,
automated techniques for learning to filter e-mail have yet
to significantly affect the e-mail market.

Here, I attack problems that plague practical e-mail filtering
and suggest solutions that will bring us closer to the accep-
tance of using automated classification techniques to filter
personal e-mail. I also present a filtering system, ifile, that
is both effective and efficient, and which has been adapted to
a popular e-mail client. Results are presented from a number
of experiments and show that a system such as ifile could
become a useful and valuable part of any e-mail client.

1. INTRODUCTION
E-mail clients generally allow users to organize their mail
into folders. Netscape Messenger, Pine, Microsoft Outlook,
Eudora and EXMH are all examples of this fact. Folders al-
low the user to organize her mail by meaningful topic. This
facilitates more efficient searching when the user is looking
for a previously sent or received e-mail. As it becomes eas-
ier to store and manipulate documents electronically, the
e-mail folder system may become a store for a wide array
of documents. Being able to efficiently maintain and search
such a collection is an important aspect of any document
management system.

Mail folders can also serve the purpose of a prioritization
system. Some e-mail is very important and needs to be
∗ifile is available at http://www.ai.mit.edu/∼jrennie/ifile.

KDD2000 Text Mining WorkshopBoston, MA USA

dealt with when it arrives. Other mail is less important and
can be scanned in batches. This is one of the principles that
Helfman and Isbell strove to build into Ishmail [7]. Users
are able to program simple rules for filtering e-mail into dif-
ferent mailboxes. Ishmail alerts the user when a message is
filtered into a high-priority folder or when a large number of
messages have accumulated in a lower-priority folder. Ish-
mail uses hand-constructed filtering rules and would greatly
benefit from the complexity reduction that an automated
filtering system would allow.

Many mail clients have similar, yet less sophisticated, filter-
ing subsystems that allow the user to filter and prioritize
mail. However, constructing and maintaining rules for fil-
tering is a burdensome task. Users sometimes define folders
according to message content rather than by pattern match-
ing, whereas mail clients generally require that filters be
based on pattern matching. Maintaining a set of filtering
rules can also be a difficult task for a user with a large num-
ber of folders. Any changes to the folder organization will
require significant restructuring of the filtering rules.

These scenarios provide ample ground for automated mail
filtering to positively affect the experience of the average
e-mail user. Classification techniques exist which can eas-
ily automate the filtering task and such classifiers can be
learned within the context of most existing mail clients, so
the user must endure no additional burdens to make use of
an automated mail filter. The main barrier to seeing au-
tomated mail filtering becoming commonplace is the reso-
lution of issues regarding the implementation of mail filters
and their integration into e-mail clients. Some of the im-
portant issues regarding mail filters include speed efficiency,
database size and the collection of supervised training data.
Time-consuming training or classification can degrade the
interface. A large database to store the classification model
may limit the user base. Also, a mail filter is only likely to be
used if no additional effort is required to reap the benefits.
In the following sections, I discuss these issues in detail, de-
scribe a mail filter, ifile, that I have written for the EXMH
mail client and give promising results from experiments that
have been run on e-mail collections of 4 different ifile users.

2. MAIL FILTERING
The term “mail filtering” is used in different contexts and re-
quires some discussion before we can be clear of the meaning
here. Not long after e-mail came into existence did people

seek ways to organize and archive their mail. Thus begat
mail filters, or, sets of rules that users put together to file
incoming e-mail into different mailboxes or folders. I’ll call
this personal mail filtering because it pertains directly to
a single person’s organizational preferences. As e-mail use
has grown, some regularity has come about the sort of e-
mail that appears in users’ mail boxes. In particular, un-
solicited e-mail, such as “make money fast” schemes, chain
letters and porn advertisements, is becoming all too com-
mon. Filtering out such unwanted trash is known as junk
mail filtering. Drucker et. al. [5] and Sahami et. al. [14]
have each examined this problem in detail. Finally, there
is also significant interest in filtering e-mail feeds or varying
sorts of electronic documents, such as netnews or Reuters
articles [10]. For the purposes of this paper, I’ll be primar-
ily concerned with personal e-mail filtering. The following
few sections discuss issues pertinent to the general problem
of mail filtering and specific to the domain of personal mail
filtering.

2.1 Classification Efficiency
Text classification is a problem that has been given much
attention recently [2] [15]. Joachims [9] gives evidence that
a recent development in classification, Support Vector Ma-
chines, can readily be applied to text to achieve error rates
significantly below those achievable using more traditional
techniques such as kNN, C4.5, Naive Bayes and Rocchio.
Support Vector Machines and other recent developments in
classification, such as Maximum Entropy discrimination [8],
provide significant improvements in accuracy, but at the cost
of simplicity and time efficiency. As Joachims mentions,
SVMs and C4.5 are costly to train and kNN requires signif-
icant time to classify a single data point. There also have
yet to arise good methods for iteratively training SVMs and
decision trees. Efficient training and classification are im-
portant concerns since any lags can significantly deter the
interface and usability of an e-mail client.

I am hardly the first to bring up the importance of efficiency
in the context of mail filtering. Cohen discusses it at some
length in [4], noting that RIPPER, his rule-learning system,
when adapted to text may not be efficient enough for the
sort of on-line classification that mail filtering requires. Of
particular concern is be RIPPER’s ability to learn rules it-
eratively; Cohen mentions the need to post-process a set of
constructed rules. Such a process is effective when train-
ing can be done in large batches, however, personal e-mail
filtering is an iterative process where the classifier must be
constantly kept up-to-date and training and classification
are highly intertwined.

One classification algorithm that provides efficient training,
quick classification and easy extensibility to iterative learn-
ing is Naive Bayes. The details of Naive Bayes are given in
section 2.4. Briefly, adding a document to a trained model
requires the recording of word occurrence statistics for that
document; no rules need to be learned and no weights need
to be optimized. Classifying a document involves calculating
a log sum for each class where the size of the sum equals to
the number of words in the document to be classified. Each
term in the sum is proportional to the frequency with which
the corresponding word has occurred in the training data.
Training consists of updating word counts; classification con-

sists of a normalized sum of the counts corresponding to the
words in the document in question. Hence, training and
classification are both simple and efficient and can be in-
tegrated into a mail client without degrading the interface.
The real-world test for this is ifile, a mail filtering system
that uses Naive Bayes to do classification. ifile has been
seamlessly integrated into the EXMH mail client and is cur-
rently being used by a number of people without complaints
of it damaging the usability of the mail client.

2.2 Supervision
Every user has a unique collection of e-mail and organizes
their e-mail in ways that are different from all other users.
Granted, there are likely to be similarities between users.
Some people keep a special “junk” folder to store unsolicited
e-mail; researchers are likely to have folders for talk and con-
ference announcements. One might be tempted to leverage
other personal mail filters (e.g. in a collaborative filtering
system or to improve prior estimates on word counts), but I
find that highly effective filtering can be achieved simply by
making use of the information made available through the
user interface of the mail client.

Cohen alludes to the supervision that users implicitly give
while using their mail client [4]. In interviewing users of
Ishmail, he found that many users manually classified e-
mail messages that could not be classified through simple
pattern-matching rules. This manual classification is a valu-
able source of training data for a mail filter. Even more
valuable is the is the collection of e-mails that are filtered
correctly. For, if a filtering system is being used to organize
a user’s e-mail collection, the user will want to correct any
mistakes made by the filtering system. Hence, every e-mail
can act as supervised data for the classification model. The
label assigned by the filter is assumed to be correct unless
the user indicates that it is incorrect by moving the message
to another folder. Here, the model must be updated accord-
ingly. The update required for Naive Bayes is simple as it
must simply shift word counts from one folder to another.

This learning architecture is implemented in ifile. Every
newly filtered message is immediately added to the classifi-
cation model using the label assigned by the filter. When
the user moves misclassified mail into the appropriate folder,
the filter updates its model. In this way, every piece of fil-
tered mail is a training example for ifile. This large number
of supervised training examples results in ifile quickly build-
ing an accurate model of the user’s filtering preferences. As
a quick validation experiment, I destroyed my ifile database
and let it rebuild only on newly filtered messages. After fil-
tering 36 messages across 10 different folders, I found that
13 messages where filtered incorrectly. 10 of those were the
first for a particular folder and could not have been filtered
correctly. Of the remaining, 23 were assigned to the cor-
rect folder and 3 were not, an accuracy rate of 88%. Hence,
ifile is able to quickly learn filtering preferences simply by
making full use of the available training data. Using this
approach, filtering preferences can be learned both quickly
and accurately.

2.3 Features
A classification model acts as a function, f , mapping from
features, F , to classes, C. A mail filter is a special classifier
where F is characteristics of e-mail messages and C is the
user’s mail folders. As do many others concerned with text
classification, I view each e-mail message as a bag of (inde-
pendent) words. Hence, the classification function, f , maps
an unordered set of words to a folder name and takes no
account for possible interdependencies between words. One
might consider using a different set of features for classifi-
cation, but bag of words is ample for most tasks and allows
for efficient and relatively simple implementation.

Of course, even with a feature set of independent, unordered
words, there are many features to consider. An indexing of
the 20,000 articles of the “20 Newsgroups”1 data set using
the default settings of McCallum’s rainbow software [13]
compiles over 100,000 unique tokens. More features mean a
larger database/classification model and slower training and
classification. One way to make filtering more efficient is to
reduce the number of features considered for classification.

Yang and Pedersen review a variety of feature selection tech-
niques for text classification and find that good techniques
rate highly features that occur frequently [19]. This obser-
vation lends itself to simple feature selection scheme that
works well within our iterative training framework. Naive
Bayes requires the tracking of word frequency statistics. Se-
lecting words by document frequency requires that we also
track, for each word, the number of documents filtered while
statistics are kept for that word. In other words, we have to
know how long each word has been in our database. I call
this statistic the word’s age. Age is defined as the number of
e-mail messages which have been added to the model since
frequency statistics have been kept for the word. Old, infre-
quent words are to be dropped while young words and old,
frequent words should be kept. One way to quantify this
is to say that words which occur fewer than log2(age) − 1
times should be discarded from the model. For example, if
“baseball” occurred in the 1st document and occurred 5 or
fewer times in the next 63 documents, the word and its cor-
responding statistics would be eliminated from the model’s
database. This feature selection cutoff is used in ifile and is
found to significantly improve efficiency without noticeably
affecting classification performance.

2.4 Naive Bayes
“Naive Bayes” is a simple statistical classification model of-
ten utilized in the problem of text categorization. McCallum
and Nigam give a good discussion of this model [12] and the
two event models that are most frequently used. For this
paper, I use the multinomial event model, where a docu-
ment is assumed to be generated by number of rolls of a
weighted die, one roll for each word in the document. There
is a unique die for each class and each face of each die corre-
sponds to a different word. The likelihood of a face coming
up for a particular die is exactly θwt|cj = P (wt|cj ; θ), or
the probability of word wt given class cj . These values are

1The 20 Newsgroups data set can be obtained from
http://www.ai.mit.edu/people/∼jrennie/20 newsgroups.

estimated from the data as follows

P (wt|cj ; θ̂) =
1 +

P|D|
i=1 NitP (cj |di)

|V |+
P|V |

s=1

P|D|
i=1 NisP (cj |di)

(1)

where |V | is the size of the vocabulary, Nit is the number
of times word t occurs in documents of class i and θ̂ is used
to denote parameters learned from the empirical data. The
probability of a document having been generated from this
model is

P (di|θ) =
|C|X
j=1

P (cj |θ)P (di|cj ; θ) (2)

P (di|cj ; θ) = P (|di|)|di|!
|V |Y
t=1

P (wt|cj ; θ)
Nit!

. (3)

Using Bayes rule, our maximum likelihood classification rule
is

arg max
cj

P (cj |di; θ̂) where P (cj |di; θ̂) =
P (cj |θ̂)P (di|cj ; θ̂)

P (di|θ̂)
.

(4)

Since we are only concerned with relative values, P (cj |di; θ̂)
is calculated as a sum of logs in order to avoid round off
error. Since log is a strictly increasing function, classifica-
tion is not affected by this transformation. Note also that
we can disregard the P (di|θ̂), P (|di|) and |di|! terms for the
purposes of classification since they are constant across dif-
ferent values of cj .

3. IFILE
ifile began in the summer of 1996 as a fun application of the
Naive Bayes classification algorithm of which I had recently
learned. Over the years it has generated a significant user
base and with the help of a number of individuals2 has de-
veloped into a mature package. At one point in time, over 40
people were signed up to receive announcements regarding
ifile releases. For many people it supplements or replaces
the functionality provided by other manually-specified mail
filters. ifile exists as a core C executable, two Perl wrap-
per scripts and Tcl code to interface with the EXMH mail
client. The core executable could be adapted to allow auto-
mated filtering using any mail client. The executable itself
stores and maintains the classification model and produces
class labels for new e-mail. The two wrapper scripts are
command-line interfaces for filtering incoming mail and up-
dating the model when the user moves mail between folders.
The wrappers are specific to the MH mail system on top of
which EXMH runs. Finally, the Tcl code provides hooks
into the user interface so that ifile can be used with almost
no user effort.

ifile takes into account all of the issues discussed in section 2.
It uses an efficient Naive Bayes implementation which can
both build a classification model and filter a new e-mail
message very quickly. For example, it builds a model of my
7000+ e-mail messages (stored on a local disk) in 27 seconds,

2Those contributing code to ifile include Andrew McCal-
lum, Diego Zamboni, Harry G. McGavran Jr., Carl Staelin,
Valdis Kletnieks, Dave Robinson and Chris Browne.

Number of Number of
User E-mail Messages Folders

1 2715 27
2 373 16
3 655 13

Rennie 4447 33

Table 1: Information about the e-mail corpora on
which classification experiments were conducted.

an average of 259 messages per second3. Creating a tar-
gzip ball of the same 7000+ messages requires 17 seconds.
MailCat/SwiftFile, a filtering system constructed by Segal
and Kephart, requires four minutes to compile a database
of 1000 messages, an average of 4 messages per second4 [16].

ifile selects features for classification according to the
log2(age)− 1 formula mentioned in section 2.3. The classi-
fication model built on my e-mail corpus of 7000+ messages
across 49 folders requires only 447,090 bytes of disk space (a
very reasonable size in an age where 10 gig hard drives are
common). Loading the model and making a classification
decision on a single 2500 byte e-mail message takes a ap-
proximately 0.2 seconds. Performing the updates necessary
to move a message takes only slightly longer, approximately
0.4 seconds. Here the database needs to be read, modified
and written back to disk. These are similar to the 0.3 sec-
ond classification times reported by Segal and Kephart [16].
Sub-0.1 second times could easily be achieved with ifile via
a client-server architecture where the database is stored in
memory rather than on disk. These numbers also compare
favorably compared to the numbers that Card [3] gives for
performing primitive UI operations, such as pressing a par-
ticular key (0.5 seconds) or moving the mouse to a target
location on the screen (1.1 seconds). Since any filtering ac-
tion will be complete by the time the user finishes her next
primitive UI operation, the user will notice little, if any, UI
degradation while using ifile. Yet, she will gain the benefits
of an automated filtering system. Hence, ifile can be con-
sidered “fast enough” because it does not limit the speed at
which a user can perform a sequence of actions.

The efficiency of ifile, combined with its classification per-
formance (described in the next section) have resulted in
many users finding ifile to be a usable and welcome addi-
tion to their attempts to prioritize and organize their e-mail
collections.

4. EXPERIMENTS
As with any supervised classification problem, training ex-
amples are an essential part of the construction of a model.
Mail filters are no different. An interesting aspect of mail
filtering is that labeled data is ubiquitous, yet difficult to ob-
tain for experimental purposes due to privacy concerns. As
has recently been discussed on the ddlbeta mailing list5, one
can construct data sets that mimic the structure and prop-

3Performance tests were run on a PIII 500Mhz PC with a
Quantum Atlas IV SCSI 9.1 gig hard disk.
4Performance test were run on a PII 400 Mhz PC.
5Contact David Lewis <lewis@research.att.com> for infor-
mation concerning ddlbeta.

55

60

65

70

75

80

85

90

95

100

User 1 User 2 User 3 Rennie

C
la

ss
ifi

ct
io

n
ac

cu
ra

cy
 (

%
)

Figure 1: Classification accuracies for seven different
experiments on four different users. Experiments
are ordered from left to right within each user block.
Note that no settings produce the best results across
all users.

erties of personal e-mail (such as collections of newsgroups
or mailing list messages), but no reasonable alternative is
guaranteed to be a good benchmark for testing.

As far as I know, there are no freely available data sets for
mail filtering. E-mail is considered to be private; few peo-
ple are willing to let strangers view and manipulate their
e-mail corpus. Hence, it can be difficult to obtain realistic
experimental results for the mail filtering task. One benefit
of ifile being a real, usable, freely available system is that
every ifile user has the framework necessary for performing
mail filtering experiments. During the course of ifile’s de-
velopment. I asked for volunteers who would be willing to
have such experiments performed on their mail collection;
four users (including the author) volunteered. The results
that I received on different mail collections are quite inter-
esting.

Experiments on each e-mail corpus were performed in a
leave-one-out fashion. In other words, each document in
a user’s corpus was labeled according to a model built on
the rest of the e-mail messages. It would be as though each
e-mail were a new message to be filtered in the context of
the rest. The assigned labels were compared against the true
labels to derive an accuracy score. Individual experiments
used slightly different settings for tokenizing e-mail messages
and selecting features for classification. The settings for the
experiments involved using one of three different tokenizers,
using a stop list, using stemming, using feature selection
as described in section 2.3 and including all e-mail headers
(as opposed to only including From, To and Subject). The
intention of running a variety of experiments was to deter-
mine whether any settings work well across different users
or whether it would be useful to tune the settings to each
individual user. All of the settings correspond to easily set
options of the ifile core executable.

Table 1 gives information regarding the e-mail corpora on
which experiments were performed. Note the varying sizes
of the e-mail collections. The fourth user (Rennie) is the
author of this paper. Figure 1 shows the results of the clas-
sification experiments. Above each user identifier is a num-
ber of bars, one for each experiment. The bars are ordered
within each user block, so the far left bar above each user
corresponds to the same experimental settings. Classifica-
tion accuracy is generally quite high, especially considering
the simplicity of the underlying classification model. This
indicates that a mail filter such as ifile may well satisfy the
average user’s need for filtering accuracy.

From these experiments, it is not clear that any parame-
ter settings provide the optimal classification performance
across a wide array of users. For example, the third bar
from the left, experiment #3, yields the best results for user
#1. This experiment used a lexer that tokenizes strings sep-
arated by whitespace; the default lexer tokenizes strings of
alphabetic characters. While this lexer gives better results
for user #1, it produces relatively mediocre results for the
other three users. The far left bar (experiment #1) produces
the best average results across the four users (89% accuracy)
and corresponds to the default settings of ifile. The settings
of experiment #1 involve using an alphabetic lexer, using a
stop list to remove common words, using feature selection
and removing headers other than From, To and Subject; no
stemmer is used. Accuracies for experiment #1 lie between
86% and 91%, a range that is likely to be acceptable for
a large number of e-mail users. These numbers compare
very well against the 52% to 76% “first button” numbers re-
ported by Segal and Kephart in their SwiftFile system [17].
Segal and Kephart consider SwiftFile’s performance to be
“unacceptable” for automated classification, whereas ifile’s
classification accuracy is acceptable for automated filtering
(proven so by the number of people who use ifile for exactly
that task).

Since no experimental settings provide the best results across
all users, it may be worthwhile to optimize classification set-
tings on a per user basis. This would allow the features used
by the classifier to be more closely tuned to how the user
makes filtering decisions. In order to reap great benefit from
such work, one would need to consider experimental settings
other than those used in these experiments; here the perfor-
mance gain achieved by choosing the optimal settings for
each user was minor.

One might be concerned that these experiments do not ac-
curately portray the filtering performance of of a mail filter
during normal usage. In real usage, the classification model
only has information about e-mail messages that were re-
ceived before the e-mail in question. In the experiments
described in this paper, the model used as training data all
e-mails besides the one in question. Hence, it had access to
future messages. However, this minor discrepancy is unlikely
to affect accuracy scores compared to an entirely realistic ex-
periment. Over the past seven months as I have been using
ifile, it has been tracking its own filtering performance and
shows a close match to the results reported in figure 1. Of
the 4772 messages that it has filtered for me, it predicted
the correct folder 85.4% of the time. This is nearly as good
as the 86.5% accuracy score reported by the leave-one-out

experiments. The slight drop may be due to the fact that
the model was not able to see future messages and based its
classification decisions solely on past messages; it may also
be due to the fact that I now have 49 e-mail folders whereas
I had only 33 folders when the original experiments were
performed. Nevertheless, extrapolating this result to the
other data, it should be clear that the accuracies reported
in figure 1 are representative of those that one would find
with real usage of ifile.

5. DISCUSSION
While personal mail filtering generally implies assigning mes-
sages a single label, an interesting way to use a text classifier
within the context of a mail client is as a filter aid. Instead
of using a text classifier to automatically filter messages, one
can use a text classifier to suggest folders to which a new
message is likely to belong. Many people use filing features
for archival purposes, filing messages to folders after reply-
ing or having utilized the contained information. However,
a person with a large collection of e-mail folders may find
the filing process cumbersome because she has to navigate
through an interface listing 30 or more folder names. Given
that a text classifier can select the appropriate folder more
than 85% of the time, it will almost always be able to give
the appropriate folder within its top three guesses. Hence,
most of the time, the user would only have to select between
three options rather than the overwhelming 30+ options if
no filtering is performed. Segal and Kephart describe this
approach and report on experiments that show how this can
make e-mail filing a less painful task [17].

This paper has shown that mail filtering is at a stage that it
can be effectively integrated into modern mail clients. How-
ever, there is still room for improvement. For example, ifile
takes no special care to track threads even though messages
that are part of the same thread are highly likely to be filed
into the same folder. Lewis and Knowles study methods
for recognizing threads and give near-perfect retrieval re-
sults by searching for matching quoted/unquoted text [11].
Such techniques could be added to ifile to improve its abil-
ity to recognize and correctly classify e-mail messages that
are part of the same thread. Another area of possible re-
search involves compensating for organizational changes and
semantic shifts over time. Users may change their folder or-
ganization and/or change their individual folder filing pat-
terns over time. The classification model could benefit from
detecting and compensating for these changes. Mail filtering
may be able to incorporate the already large body of work
that exists on the problems of topic detection and tracking
(TDT) [18] [1].

6. CONCLUSIONS
This paper discusses practical concerns surrounding the ap-
plication of text classification to the problem of mail filter-
ing. Much research has recently been vested in the prob-
lem of text categorization. There is even a significant body
of work on the application to mail filtering. And yet, few
use the automated filtering techniques developed by this re-
search. Here, I have discussed some of the barriers separat-
ing research from reality and suggested reasonable solutions
to those problems. Furthermore, I have presented a freely
available, functioning e-mail filtering system, ifile, that has
already been in use for a number of years and have reported

on experiments which suggest that such a system performs
well enough to be accepted as a beneficial tool by a large
number of e-mail users.

7. REFERENCES
[1] J. Allan, R. Papka, and V. Lavrenko. On-line new

event detection and tracking. In Proceedings of ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR-98), 1998.

[2] A. Berger. Error-correcting output coding for text
classification. In Proceedings of IJCAI-99 Workshop
on Machine Learning for Information Filtering, 1999.

[3] S. K. Card, T. P. Moran, and A. Newell. The
Psychology of Human Computer Interaction. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1983.

[4] W. Cohen. Learning rules that classify e-mail. In
AAAI Spring Symposium on Machine Learning in
Information Access, 1996.

[5] H. Drucker, D. Wu, and V. N. Vapnik. Support vector
machines for spam categorization. IEEE Transactions
on Neural Networks, 10(5), 1999.

[6] D. Harris and H. Clark. Worldtalk releases first
Internet e-mail corproate
usage report; concludes e-mail abuse at epidemic levels.
http://www.worldtalk.com/Corporate%20Information/
press%20releases/iecur.htm, 1999.

[7] J. Helfman and C. Isbell. Ishmail: Immediate
identification of important information.
http://www.research.att.com/∼jon/ishmail, 1995.

[8] T. Jaakkola, M. Meila, and T. Jebara. Maximum
entropy discrimination. Technical Report AITR-1668,
MIT, 1999.

[9] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
European Conference on Machine Learning
(ECML-98), 1998.

[10] K. Lang. Newsweeder: Learning to filter netnews. In
Proceedings of Twelfth International Conference on
Machine Learning (ICML-95), 1995.

[11] D. D. Lewis and K. A. Knowles. Threading electronic
mail: A preliminary study. Information Processing
and Management, 33(2):209–217, 1997.

[12] A. McCallum and K. Nigam. A comparison of event
models for naive bayes text classification. In AAAI-98
Workshop on Learning for Text Categorization, 1998.

[13] A. K. McCallum. Bow: A toolkit for statistical
language modeling, text retrieval, classification and
clustering. http://www.cs.cmu.edu/∼mccallum/bow,
1996.

[14] M. Sahami, S. Dumais, D. Heckerman, and
E. Horvitz. A bayesian approach to filtering junk
e-mail. In Proceedings of Workshop on Learning for
Text Categorization, 1998.

[15] S. Scott and S. Matwin. Feature engineering for text
classification. In Proceedings of Sixteenth International
Conference on Machine Learning (ICML-99), 1999.

[16] R. B. Segal and J. O. Kephart. Mailcat: An intelligent
assistant for organizing e-mail. In Proceedings of the
Third International Conference on Autonomous
Agents, 1999.

[17] R. B. Segal and J. O. Kephart. Incremental learning
in swiftfile. In Proceedings of the Seventeenth
International Conference on Machine Learning
(ICML-00), 2000.

[18] Y. Yang, T. Ault, T. Pierce, and C. W. Lattimer.
Improving text categorization methods for event
tracking. In Proceedings of ACM SIGIR Conference
on Research and Development in Information
Retrieval (SIGIR), 2000.

[19] Y. Yang and J. Pedersen. Feature selection in
statistical learning of text categorization. In
Fourteenth International Conference on Machine
Learning (ICML-97), 1997.

