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Abstract

The Support Vector Machine (SVM) typi-
cally outperforms other algorithms on text
classification problems, but requires train-
ing time roughly quadratic in the number of
training documents. In contrast, linear time
algorithms like Naive Bayes have lower per-
formance, but can easily handle huge training
sets. In this paper, we describe a technique
that creates a continuum of classifiers be-
tween the SVM and a Naive Bayes like algo-
rithm. Included in that continuum is a clas-
sifier that approximates SVM performance
with linear training time. Another classifier
on this continuum can outperform the SVM,
yielding a breakeven point that beats other
published results on Reuters-21578. We give
empirical and theoretical evidence that our
hybrid approach successfully navigates the
tradeoffs between speed and performance.

1. Introduction & Related Work

There is a great need to find fast, effective algorithms
for text classification. A KDD panel headed by Domin-
gos [2002] discussed the tradeoff of speed and ac-
curacy in the context of very large (e.g. 1 million
record) databases. In particular, quadratic-time al-
gorithms are not practical on such databases. This
makes impractical the best-performing text classifica-
tion algorithms. The Support Vector Machine (SVM)
has consistently outperformed other algorithms [Yang
and Liu, 1999; Joachims, 1997; Dumais et al., 1998;
Rennie and Rifkin, 2001] but requires approximately
en? time to train (Joachims estimates between cn':”
and cn?1!), where n is the number of training exam-
ples, and ¢ is an algorithm-dependent constant. K-
nearest neighbors (kNN) performed nearly as well as
the SVM in Yang and Liu’s experiments, but labeling a
document requires a full scan through the training set.

Labeling a test set of size n requires cn? time. Linear
Least Squares Fit (LLSF) performed well, but requires
computation on all pairs of documents, giving it cn?
running time [Yang and Liu, 1999]. Yang and Liu also
experimented with a 3-layer Neural Network (NNet)
with 64 hidden units, but it performed significantly
worse than an SVM. Other tested algorithms, such as
C4.5 and Bayes Nets, perform no better than the linear
running time Rocchio and multinomial Naive Bayes
(NB) algorithms. Rocchio and Naive Bayes are among
the best linear-scaling algorithms and are practical for
huge datasets. Since the best performing algorithms
tend to be slowest, our focus is on finding algorithms
that successfully navigate the tradeoffs between speed
and performance.

We introduce a continuum of classifiers called the
“Bundled-SVM” that spans the space between the
high performance Support Vector Machine and a fast
algorithm based on mean statistics that is similar to
Naive Bayes. The Bundled-SVM uses the SVM as its
core, but pre-processes the training data to offer vary-
ing degrees of efficiency. Given a set of documents,
we randomly concatenate together documents within
each class to produce a smaller set of documents that
is handed to the SVM. The “bundle-size” parameter
specifies how many documents are concatenated into
each bundle. A Bundled-SVM with no concatenation
is identical to the regular SVM. On the other hand,
a Bundled-SVM with all documents concatenated to-
gether yields a classifier based on the mean statistics
of each class, similar to Naive Bayes and Rocchio.

In this paper, we argue that the Bundled-SVM allows
us to explicitly manage the trade-off between the ac-
curacy of the SVM and the speed of a Naive Bayes like
algorithm. We follow with experimental results that
confirm these assertions. We show how the Bundled-
SVM can be used as a linear time approximation to
the SVM and give empirical evidence that this ap-
proximation generally outperforms existing linear-time



algorithms. In one case, we find that the Bundled-
SVM even outperforms the SVM, achieving the best
published micro and macro breakeven points on the
Reuters-21578 data set.

2. Basic Classification Algorithms

In this section, we describe three algorithms that
are used in our experiments. The SVM and “Mean-
frequency Discriminant” algorithms correspond to the
two endpoints of our Bundled-SVM continuum. In our
experiments, we also use multinomial NB as a baseline
for comparison since it performs as well as (or better
than) other common linear-time algorithms. Multi-
nomial NB also serves as motivation for the Mean-
frequency Discriminant algorithm.

Many of these algorithms use what is known as a doc-
ument vector, d, which is a V-dimensional vector com-
posed of word counts, where the value of the i*" com-
ponent is the number of times word 7 occurred in the
document, and V is the size of our total vocabulary.
We apply the SMART ltc transform', which normal-
izes the document vectors to length one and yields
improved performance [Yang and Liu, 1999)].

2.1 The Support Vector Machine

The Support Vector Machine (SVM) is a classifier,
originally proposed by Vapnik [1995], that finds a
maximal margin separating hyperplane between two
classes of data.

An SVM is trained via the following optimization
problem:
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where each d; is a document vector, y; is the label (41
or —1) for d; and 1 is the vector of weights that defines
the optimal separating hyperplane. This form of the
optimization is called the “primal.” By incorporating
the inequality constraints via Lagrange multipliers, we
arrive at the “dual” form of the problem,
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The list of SMART weightings can be found at
http://www.ai.mit.edu/~jrennie/ecoc-svm/smart.html.

subject to
0<a; <C Vi (5)
Z a;y; =0 (6)

Given optimized values for the «;, the optimal sepa-
rating hyperplane is

W= Zaiyidi- (7)

For more information about the SVM, see Burges’
tutorial [1998], Cristianini and Shawe-Taylor’s book
[2000], Evgeniou et al.’s article [2000] and Vapnik’s
book [1998].

The regular SVM finds a separating hyperplane de-
fined by a weighted sum of the training documents.
The Bundled-SVM, which concatenates together doc-
uments before giving them to the SVM, is similar to
constraining some a’s to be equal to each other. Sec-
tion 3 provides a more complete description and theory
of the Bundled-SVM.

2.2 Naive Bayes

Naive Bayes is a simple Bayesian text classification al-
gorithm. We use the “multinomial” version that Yang
and Liu [1999] used in their experiments. It assumes
that each token in a document is drawn independently
from a multinomial distribution; documents are clas-
sified according to the Bayes optimal decision rule.
Each class, ¢, has its own vector of multinomial pa-
rameters, §°. 6 is the (mean) rate of occurrence for
word k in class c¢. Hence, the only statistics needed
to learn a Naive Bayes model are the mean statis-
tics. This is important for the comparison of Naive
Bayes with the Bundled-SVM. The concatenation of
documents retains the mean frequency statistics, so
the one-bundle-per-class Bundled-SVM uses the same
information as does Naive Bayes to learn a decision
boundary.

We estimate parameters for Naive Bayes via Max-
imum a Posteriori (MAP) using the training data.
A new document, d, is assigned the label ﬁ(d) =
argmax, p(d|f€)p(c). Using D¢ to denote the train-
ing data for class ¢, we use parameter estimates g =
argmax, p(D¢|0)p(f). A Dirichlet parameter prior,
p(0), with hyper-parameters «; = 2 Vi gives an es-
timate of ¢ = ]]\\,[Ei‘l/ for word k, where N is the
number of times word k occurred in class ¢, N€ is the
total number of word occurrences in class ¢ and V is
the size of the vocabulary. The choice of the class
prior has little effect on classification, so we choose a




flat prior, p(c) = i We assign a document, d, the

label H (d) where
H(d) = argma I | (71\7;5 +1 )fk (8)
. Ne+V

See Rennie [2001] for further explanation. Chakrabarti
et al. [1997] use a flat parameter prior and expectation
to derive the same parameter estimates. McCallum
and Nigam [1998] give an explanation of the distinction
between the traditional (independent features) Naive
Bayes classifier and the multinomial.

2.3 Mean-frequency Discriminant

The fast end of the Bundled-SVM continuum con-
catenates together all of the documents in each class.
It uses the same mean statistics as multinomial NB,
but arrives at its decision boundary in a more direct
way. For this reason, we call the algorithm the Mean-
frequency Discriminant (MFD). Let d¢,, be the docu-
ment created by concatenating together all documents
in class ¢. Let dS,; (k) be the count of word k in dS,,.

Then multinomial NB uses the statistics Nf = dS,, (k)
and N¢ = S/, d¢,. (k). NB uses the assumption of
a multinomial model to obtain a discriminant. MFD
uses a different approach; it determines the decision
boundary as an SVM does. For the binary problem,
the discriminant is the perpendicular bisector of the
vector from the negative class mean to the positive
class mean. We do not use d¢,; directly, because it is
not normalized for length. We apply the SMART ltc
transform to each d¢,; and to test documents so that
they are more easily comparable. Consider the binary
classification problem with classes ¢ € {+, —}. Let dj,,
be the mean vector after the ltc transform has been
applied. Then, classification of a document is equiv-
alent to finding the mean vector, dl'tc or d., having
the smallest angle with the test document. The MFD
is equivalent to the binary classifier used by Bundled-
SVM when all of the documents for each class are bun-

dled together.

3. A New Approach

The Bundled-SVM, parametrized by the bundle size,
generates a continuum of classifiers between the SVM
and MFD. On the fast end of the continuum, MFD
uses only the mean statistics of the data and thus
achieves fast running time. MFD only requires one
input point per class, namely the mean. Training and
testing are clearly linear time. On the other end of
the continuum, the SVM achieves high accuracy but
requires a prohibitively long training time on large

datasets. The SVM uses each individual document
to train its classifier so it trains slower but has higher
accuracy.

In order to achieve both high accuracy and fast train-
ing time, we explore the space of classifiers between
MFD and the SVM. The Bundled-SVM is designed to
combine the speed of MFD and the accuracy of the
SVM by forming a new input data set that is smaller
than the original data set but larger than the set of
means used by MFD. Our approach proceeds as shown
in Table 1. The bundle-size parameter, s, determines
the size of our new input data set, and we will some-
times refer to the Bundled-SVM with parameter s = k
as a Bundled-SVM (s = k). The Bundled-SVM con-
catenates documents in the original data set together
to form longer documents, each composed of s original
documents of the same class.

The Bundled-SVM (s = 1) performs no concatenation
and behaves identically to the SVM in both accuracy
and training time. Training time is approximately cn?,
where n is the number of training examples, and accu-
racy is generally high. When each class is reduced to
one point, denoted s = max, the Bundled-SVM gives
the SVM one point per class as input, namely the con-
catenation of all documents in a class. In the binary
classification case, the SVM receives two vectors, one
for each class, and the SVM will find the widest sepa-
rating hyperplane between the two vectors, which hap-
pens to be the perpendicular bisector. This behavior
is what we refer to as the Mean-frequency Discrimi-
nant algorithm. Training time becomes linear, cn, but
accuracy is generally lower than in the s = 1 case.

In between these extreme values of the bundle-size
s = 1 and s = max, the training time is somewhere
between cn and cn?, and we expect the accuracy to
be somewhere between the accuracies of the original
SVM and MFD. It is clear that training time can be
improved over the usual SVM as we decrease the size
of the input data set by increasing the bundle size
s. Accuracy improves over MFD as we decrease the
bundle-size s because concatenating documents into
bundles preserves more information about the distri-
bution of the documents than the mean alone. Each
bundle provides some additional information about the
underlying structure of the distribution of document
vectors within each class.

As a particularly noteworthy example of the tradeoff
between accuracy and speed within this continuum, we
can choose a bundle size of s = y/n/m, where m is the
number of classes given to us in the classification prob-
lem. Our approach proceeds by concatenating docu-
ments together on a per-class basis until we are left



with y/n/m documents. We are thus left with at most
v/nm documents. Using this set as our input data,
the SVM training time is cn, since m, the number of
classes, is fixed. As will be shown in Section 5, this
Bundled-SVM (s = 4/n/m) performs nearly as well
as the original SVM in terms of classification accuracy
while achieving a dramatic speedup from quadratic to
linear training time.

When the number of documents is not very large, a
linear-time classifier is usually not necessary, but con-
catenating together documents can still be useful. For
example, concatenating pairs of documents, thus halv-
ing the number of training documents, makes training
time for the SVM a quarter of the time necessary to
train on the full set of documents. Yet, we find that
concatenating pairs of documents rarely hurts classifi-
cation performance with the SVM and can even help.

3.1 Handling Large Data Sets

Often in text, however, the number of training doc-
uments is extremely large. A standard approach to
handling exceedingly large amounts of data is to sub-
sample. This makes state-of-the-art algorithms, such
as the SVM, practical, but can greatly degrade per-
formance. The ignored examples contain much infor-
mation about the decision boundaries between classes.
We propose that it is possible to retain some of this
information by randomly concatenating together doc-
uments in the same class. Text is unusual in that it is
very high dimensional. The set of possible decision
boundaries between document classes is very large.
As the SVM constructs the decision boundary as a
weighted sum of training examples, the space of pos-
sible boundaries is often constrained by the number
of training examples. We argue that concatenation is
preferred to subsampling because the constraint it ef-
fectively imposes on the SVM is less severe than that
of subsampling.

Let D = {dy,...,d,} be the set of training documents
for a classification problem. We want to lessen the time
it would take for an SVM to learn a decision boundary
using these documents, so we consider two options, 1)
subsampling, and 2) concatenation. For subsampling,
we remove d,, from the set of training documents. Let
a® ={aj,...,a_;} be the set of a’s that the SVM
learns after we remove d,,. The decision boundary the
SVM learns is w® = Z?:_ll ofy;d;. For concatenation,
we create a new set of training documents that con-
tains one less document vector than contained in the
original set, D¢ = {d5,...,d%_;}. The first n—2 docu-
ments are identical to the original training set, df = d;
forie {1,...,n—2}. d¢_, is defined as the document

vector resulting from the concatenation of documents
dp—1 and d,, (simply d,,—1 + d,,). After training an
SVM with this set of documents, D¢, we get a set of
alphas, a¢ = {af,...,af_;}, that define the decision
boundary for the SVM, w® = S " afy;ds.

Now, consider writing the two decision boundaries,
w® and w€, in terms of «’s on the full set of docu-
ments. w® simply forces o, = 0. Let o; := af for i €
{1,...,n—1} and a, := 0. Then w* = Y1 | a;y;d;.
Subsampling is similar to training an SVM with the
full set of documents but constraining some of the a’s
to be zero. Concatenation imposes a different con-
straint. Concatenating two documents corresponds to
a summing of their document vectors. This forces

two a’s to be equal to each other. Let «; := af for
ie{l,...,n—2} and ap_1 = ap = af_;. Then,
w’ = Z?:l «;y;d;. Concatenation is similar to train-

ing an SVM with the full set of documents, but con-
straining some a’s to be equal to each other.

When the number of training documents (before con-
catenation or subsampling) is less than the size of the
vocabulary (n < V), subsampling is clearly a poor
choice—document vectors are usually linearly inde-
pendent. We verified this on the three data sets we use
for this paper. For each set of documents, only one or
two can be removed without reducing the span of the
set of document vectors. To see why this is expected,
note that it is reasonable to assume document vec-
tors are drawn from some smooth distribution. Con-
sider drawing n points uniformly from a V-dimensional
unit sphere. The set of points will be linearly inde-
pendent with probability 1. The set of events where
there is some linear dependence has measure zero. The
same property is true of any smooth distribution in V-
dimensional space. When all of the training examples
given to an SVM are linearly independent, many «’s
will be non-zero. A large number of points will take
part in defining the decision boundary. In this case,
subsampling is a bad choice because it forces some of
the a’s to be zero. Concatenation is a better alterna-
tive; it allows all of the a’s to be positive. The equality
constraint means that the decision boundary may not
be as good as the (unbundled) SVM, but it is a better
approximation than the constraint that subsampling
imposes.

When n > V, the argument for concatenation is less
strong, but there is still reason to believe that it is
a better alternative than subsampling. As with the
bundled-SVM, to achieve linear time, roughly \/n doc-
uments need to be subsampled; and in most cases
(when n < V?2) this lowers n to below V. Even in this
case, where the document vectors are no longer linearly



independent, the decision boundary is not defined by
an arbitrary linear combination of document vectors,
but rather by a non-negative combination. Removing
a vector may reduce the expressiveness of the set. In
other words, when a document is removed by subsam-
pling, the set of feasible decision boundaries may be
reduced even though that document is a weighted sum
of other documents. Concatenation also does not fully
preserve the set of possible decision boundaries, but it
does preserve some of the information from each data
point, whereas subsampling completely eliminates a
set of documents that may be useful in determining
the decision boundary.

3.2 Further Analysis

Higher levels of bundling lessens the amount of infor-
mation available to the SVM. However, there is reason
to believe that the Bundled-SVM still has most of the
information it needs to do classification. The docu-
ment vectors in text are extremely sparse; of the entire
vocabulary (typically in the tens of thousands), only a
hundred words are normally present in any given doc-
ument. It is fairly common for words in the training
set to be exclusively in one class or the other. For ex-
ample, if we create twenty one-vs-all classifiers on 20
Newsgroups with 2000 training examples, we find that
the average classifier has 808 words that exclusively
sit in the “one” class, and 24936 words that are exclu-
sively in the “all” class. Only 3167 words appear in
both classes.

When the SVM (or most other classifiers) creates a de-
cision boundary for such data, each of the 808 words in
the “one” class will receive positive weight and each of
the 24936 words in the “all” class will receive negative
weight. Concatenating the documents has no effect on
these statistics; the SVM will maintain a positive or
negative weight on the exclusive words irrespective of
the bundle size parameter. The separating hyperplane
may rotate as the bundle size changes, but since about
90% of the words are exclusive to the “one” or the “all”
class, the vast majority of weights will maintain their
sign.

4. Data Sets and Experimental Setup

For our experiments, we use three well-known data
sets: 20 Newsgroups [McCallum and Nigam, 1998;
Slonim and Tishby, 1999; Berger, 1999], Industry Sec-
tor [Ghani, 2000] and Reuters-21578. [Yang and Liu,
1999; Joachims, 1997; Schapire and Singer, 2000]. We
use Rainbow to pre-process the raw documents into
feature vectors [McCallum, 1996]; our pre-processing
steps mimic those used by Rennie and Rifkin for 20

Let s be the desired bundle-size.

Let n; be the number of documents in class i.
Let g;; = 1 for each document d;; in class .
Let Dz = {dila . adznl}

for j =1tomn;/s

e Randomly select two document indices, a and b,
such that g, + g, < s.

e Remove documents d, and d; from D;.

e Concatenate d, and d, and insert this new docu-
ment as dy,+; into D;. Set gn,+; = ga + gb-

Table 1. Subroutine used by the Bundled-SVM to concate-
nate documents together. To train the Bundled-SVM, the
resulting D; is then used as the new, smaller input data
set for a regular SVM.

Newsgroups and Industry Sector; we use the Mod-
Apte split for Reuters-21578.

The 20 Newsgroups data set is a collection of Usenet
posts, organized by newsgroup category, which was
first collected as a text corpus by Lang [1995]2. It
contains 19,997 documents evenly distributed across
20 classes. We remove all headers and UU-encoded
blocks, and skip stoplist words and words that occur
only once®. The vocabulary size is 62,061.

The Industry Sector data is a collection of corporate
web pages organized into categories based on what a
company produces or does*. There are 9649 docu-
ments and 105 categories. The largest category has
102 documents, the smallest has 27. We remove head-
ers, and skip stoplist words and words that occur only
once’. The vocabulary size is 55,197.

Since 20 Newsgroups and Industry Sector are multi-
class, single-label problems, we constructed a one-vs-
all classifier for each category. To assign a label to
a document, we selected the most confident classi-
fier. Note we bundled only within the top-level cat-
egories. For example, on the 20 Newsgroups data set,
the Bundled-SVM (s = max) used 1 positive and 19
negative training examples for each classifier.

The Reuters-21578 is a collection of Reuters newswire
stories that is commonly used in text classification ex-

2The 20 Newsgroups data set can be obtained from
http://www.ai.mit.edu/~jrennie/20Newsgroups/.

30ur 20 Newsgroups pre-processing corresponds to rain-
bow options “—istext-avoid-uuencode —skip-header -O 2.”

“We obtained the Industry Sector data set from
http://www-2.cs.cmu.edu/~TextLearning/datasets.html.

®0Our Industry Sector pre-processing corresponds to
rainbow options “—skip-header -O 2.”



periments. We use the Mod-Apte split. There are
90 categories with at least one document in both the
training and the test set. After eliminating documents
not labeled with at least one of these categories, we are
left with 7770 training documents and 3019 test docu-
ments. After eliminating words from a standard stop
list and words that only appear once, we have a vo-
cabularly size of 18,624. Reuters poses a multi-label
problem. We construct a one-vs-all classifier for each
category. A document is assigned a label for each clas-
sifier that produces a positive value.

For 20 Newsgroups and Industry Sector, we use multi-
class classification accuracy to compare different algo-
rithms. For Reuters, we use precision-recall breakeven.
To compute breakeven, for each class, we trade-off be-
tween precision and recall until we find their scores
to be equal. For macro breakeven, we average these
scores. For micro breakeven, we perform a weighted
average, where the weight for a class is the number of
testing examples in that class.

The Mod-Apte split defines the training and test sets
to be used for Reuters. For the 20 Newsgroups and In-
dustry Sector, we experiment on 10 random test/train
splits and report average performance. For each split,
we select the training set first and use all remaining
documents for testing. For the 20 Newsgroups data,
we created training sets with 600, 300, 150, 100, 50,
25, and 10 training documents per class; and for the
Industry Sector data, we used training sets of (up to)
52, 20, 10, and 5 training documents per class.

We compare four different algorithms on the 20 News-
group and Industry Sector datasets: a standard SVM
classifier, a multinomial NB classifier, the Bundled-
SVM classifier, and a subsampled SVM classifier. The
subsampled SVM uses a number of training documents
equal to the number of bundles in the Bundled-SVM.
In particular, it chooses the longest documents—we
found that this worked better than other subsampling
techniques. The SVM and NB are described in sec-
tion 2, and were chosen as high-accuracy algorithms
relative to their respective training times of cn? and
cn.

For our SVM and Bundled-SVM experiments, we use
the SMART ltc transform; the SvmFu package is used
for running experiments [Rifkin, 2000]. We set C, the
penalty for misclassifying training points, at 10. We
produce multi-class labels by training a one-versus-all
SVM for each class and assigning the label of the most
confident SVM. We use the linear kernel for the SVM
since after applying the SMART ltc transform, the lin-
ear kernel performs as well as non-linear kernels in text
classification [Yang and Liu, 1999].

Precision-Recall Breakeven (Reuters)
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Figure 1. The performance of various Bundled-SVM clas-
sifiers on the Reuters dataset is shown. At s = 2, the
micro-averaged precision-recall score of .884 exceeds pre-
viously published results. For bundle sizes between 2
and 9, Bundled-SVM performs at least as well as a regu-
lar SVM. The Bundled-SVM always performs significantly
better than Naive Bayes

5. Results

In Section 3, we gave reasons for why the Bundled-
SVM should outperform a subsampled SVM and will
roughly approximate a normal SVM. Our experimen-
tal evidence over three datasets shows that this ap-
proximation is very good indeed. Moreover, the train-
ing time is reduced significantly, but the performance
is still superior to subsampling and other linear time
algorithms such as Naive Bayes.

5.1 The Reuters-21578 Dataset

Figure 1 shows that the Bundled-SVM performs very
well on the Reuters dataset. When measured with the
micro-averaged precision-recall metric, the Bundled-
SVM (s = 2) sets a record high score of .884, three
percentage points better than the SVM on the same
dataset. Note that our SVM score (.857) is close to
what Yang and Liu [1999] reports. This beats the
score of .878 published by Weiss et al. [1999]. At the
point the Bundled-SVM scales linearly (s = \/n/m =
\/7770/90 = 9), it achieves approximately the same
breakeven as the regular SVM of .857 in significantly
less time.

The results are mostly consistent with our expecta-
tions; as the bundle-size increases, after s = 2, the per-
formance gradually decreases, mirroring our expected
transition between the SVM (s = 1) and the fully bun-
dled algorithm which uses s = max. This shows that
the Bundled-SVM successfully navigates the tradeoffs
between speed and performance.



Accuracy for Bundled-SVM on 20 News
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Figure 2. The performance of Bundled-SVM with different
bundle sizes is shown (top) for the 20 News dataset with
2000 training examples. The running time decreases ex-
ponentially (bottom), but the accuracy only gradually de-
creases and always remains above Naive Bayes (the dotted,
horizontal line).

Accuracy for Various Algorithms on 20 News Dataset
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Figure 3. Bundled-SVM (s = y/n/m) performs between
the SVM and Naive Bayes (top). Its training time scales
linearly (bottom) while the SVM scales quadratically.
Thus the Bundled-SVM achieves a performance improve-
ment over Naive Bayes while training much more quickly
than the SVM.

5.2 The 20 News Dataset

The 20 News dataset has some notable differences with
Reuters: it has far fewer classes, more total docu-
ments, and each document has exactly one label. Be-
cause its document size is the largest of the three
datasets, we used 20 News to show how classification
time changes with both the number of training docu-
ments and with the bundle size. Our first pair of ex-
periments, displayed in Figure 2, shows how the bun-
dle size effects performance and user process time on
the dataset with 2,000 training examples. The perfor-
mance with a bundle size of 2 is approximately even
with no bundling, followed by a decrease in perfor-
mance as the bundle size increases. The decrease in
performance is more substantial than on Reuters, but
all the bundle sizes from no bundling to full bundling
(100 points/class) perform better than Naive Bayes.

The measured user process time decreases exponen-
tially with s, the bundle size. An s-sized bundle causes
a reduction in the number of input documents for class
i from n; to min(n;/s, 1), which changes the speed of
the algorithm from roughly en? to roughly c¢(n/s)%. At
the linear time point, (s = y/n/m = 1/2000/20 = 10),
the performance is only slightly worse than the SVM,
but the Bundled-SVM takes a very small fraction of
the time that the SVM requires. This linear time point
demonstrates the Bundled-SVM’s successful trade-off
between performance and speed: the region where the
performance drop-off is most gradual corresponds to
the area where the absolute time speedup is greatest.

Our second pair of experiments fixes the bundle-size
at y/n/m and varies the number of training examples
(Figure 3). At that bundle-size, Bundled-SVM scales
linearly with the number of training examples (bot-
tom graph) but maintains a high multi-class accuracy
within 2% of the regular SVM. It consistently outper-
forms Naive Bayes over several training sizes. The
difference between Bundled-SVM and Naive Bayes is
largest for small training sizes, suggesting Bundled-
SVM does a good job generalizing over small data sets.

5.3 The Industry Sector Dataset

The Industry Sector database provides a third em-
pirical validation of our method (Figure 4). The top
graph shows Bundled-SVM outperforms Naive Bayes.
However, unlike the first two datasets, performance
does not gradually descend as bundle-size increases.
Rather, it is constrained to a fairly small range. The
regular SVM (s = 1) does not perform much better
than the SVM with one bundle per class (s = max).
The bottom graph shows the performance of the linear
time Bundled-SVM (s = /n/m) performs somewhat
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Figure 4. Industry Sector performance across various
bundle-sizes (top) and training sizes (bottom). The top
graph shows that the Bundled-SVM’s performance does
not change much after an initial drop. There is little per-
formance difference between s = 10 and s = max. But, at
all bundle-sizes, it significantly outperforms Naive Bayes
(dotted horizontal line). The bottom graph shows the per-
formance of the linear-time Bundled-SVM (s = \/n/m).
Its performance closely approximates the SVM and out-
performs Naive Bayes.

worse than the SVM, but that both perform far better
than Naive Bayes.

5.4 Summary of Results

Table 2 summarizes our results for four classifiers on
the Bundled-SVM continuum. The results are for 20
Newsgroups with 2000 training points, Industry Sec-
tor with 4800 training points, and the Reuters Mod-
Apte split with 7770 training points. The scores are
in terms of accuracy for 20 News and Industry Sector,
and precision-recall breakeven for Reuters.

6. Conclusions and Future Work

We presented the Bundled-SVM, which creates a con-
tinuum of classifiers between the SVM and the MFD
algorithm. We argued that this continuum explicitly
allows us to trade-off between the performance of the
SVM and the fast time of algorithms that use mean
statistics, like Naive Bayes and Rocchio. We also
showed that our technique of modifying the training
data by concatenating documents is superior to sub-
sampling.

Along the Bundled-SVM continuum, two points are
worth highlighting that empirically give good results.
Bundled-SVM (s = 2), which concatenates pairs of
documents by class, runs roughly four times faster
than the SVM; and yet, in two of three datasets, it
outperforms the SVM (in the case of Reuters, sig-
nificantly). The Bundled-SVM (s = /n/m) runs in
linear time but outperforms Naive Bayes on all three
datasets.

When using one bundle per class, the Bundled-SVM
uses information similar to Naive Bayes and Rocchio
in constructing a classifier. But, the classification
boundary is different. Since Naive Bayes and Roc-
chio are popular and effective algorithms when there
is plentiful training data, we plan to create versions
of the Bundled-SVM that exactly match these algo-
rithms when using one bundle per class. This would
give a guaranteed level of performance at one end of
the continuum and the potential for much improved
classification at smaller bundle-sizes.

An important next step for this work is to apply the
Bundled-SVM to much larger data sets. We have
shown the ability to trade-off classification perfor-
mance for speed on moderate-size data sets, but linear-
time algorithms only become essential on larger cor-
puses. An evaluation on a much larger data set will
make clear whether the performance observed so far
holds as the number of training examples increases.
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